Home
Class 12
MATHS
If overset(to)(X) "." overset(to)(A) =...

If `overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(to)(B) =0, overset(to)(X) "." overset(to)(C ) =0` for some non-zero vector `overset(to)(X) " then " [overset(to)(A) overset(to)(B) overset(to)(C )]=0`

A

`abs(A)abs(B)abs(C)`

B

0

C

`2abs(A)abs(B)abs(C)`

D

none of these

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|18 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|65 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-1 Single Correct Answer Type Questions)|33 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Let vec(A),vec(B),vec(C ) be vectors of length 3, 4, 5, respectively Let overset(to)(A) be perpendicular to overset(to)(B) +overset(to)(C ) , overset(to)(B) " to " overset(to)( C) + overset(to)(A) " and " overset(to)(C ) to overset(to)(A) +overset(to)(B) then the length of vector overset(to)(A) +overset(to)(B)+overset(to)(C ) is .......

The scalar overset(to)(A) .[(overset(to)(B) xx overset(to)( C)) xx (overset(to)(A) + overset(to)(B) + overset(to)( C))] equals

If the vectors overset(to)(b), overset(to)(c ) , overset(to)(d) are not coplanar then prove than the vectors (overset(to)(a) xx overset(to)(b)) xx (overset(to)(c ) xx overset(to)(d)) + (overset(to)(a) xx overset(to)(c )) xx (overset(to)(d) xx overset(to)(b)) +(overset(to)(a) xx overset(to)(d)) xx (overset(to)(b) xx overset(to)( c)) is parallel to overset(to)(a)

If overset(to)(A) , overset(to)(B) " and " overset(to)( c) are vectors such that |overset(to)(B) |=|overset(to)( C ) | . Prove that | (overset(to)(A) + overset(to)(B)) xx (overset(to)(A) + overset(to)(C )) | xx (overset(to)(B) xx overset(to)(C )) . (overset(to)(B) + overset(to)( C )) = overset(to)(0)

Let overset(to)(A),overset(to)(B)" and " overset(to)(C ) be unit vectors . If overset(to)(A).overset(to)(B) = overset(to)(A).overset(to)(C ) =0 and that the angle between overset(to)(B) " and " overset(to)(C )" is " pi//6. Then overset(to)(A) =+-2 (overset(to)(B)xxoverset(to)(C ))

Let overset(to)(p) , overset(to)(q) , overset(to)(r ) be three mutually perpendicular vectors of the same magnitude. If a vectors overset(to)(X) satisfies the equation overset(to)(p) xx [(overset(to)(x) -overset(to)(q)) xx overset(to)(p)] + overset(to)(q) xx [(overset(to)(x)-overset(to)(r ))xx overset(to)(q)] + overset(to)(r ) xx [(overset(to)(x) - overset(to)(p)) xx overset(to)(r )]=overset(to)(0) " then " overset(to)(x) is given by

If vectors overset(to)(a) , overset(to)(b) , overset(to)( C) are coplanar then show that |{:(overset(to)(a),,overset(to)(b),,overset(to)(c )),(overset(to)(a)"."overset(to)(a),,overset(to)(a)"."overset(to)(b),,overset(to)(a)"."overset(to)(c )),(overset(to)(b)"."overset(to)(a),,overset(to)(b)"."overset(to)(b),,overset(to)(b)"." overset(to)(c )):}|

For any three vectors overset(to)(a), overset(to)(b) " and " overset(to)(C ) (overset(to)(a) - overset(to)(b)). {(overset(to)(b)-overset(to)(c))xx(overset(to)(c)-overset(to)(a))} = 2overset(to)(a).(overset(to)(b)xx overset(to)(c))

If overset(to)(a),overset(to)(b),overset(to)(c ),overset(to)(d) are four distinct vectors satisfying the conditions overset(to)(a)xxoverset(to)(b)=overset(to)(c )xx overset(to)(d) " and " overset(to)(a)xxoverset(to)(c ) = overset(to)(b)xx overset(to)(d) then prove that , overset(to)(a).overset(to)(b)+overset(to)(c ). overset(to)(d) ne overset(to)(a). overset(to)(c)+overset(to)(b).overset(to)(d) .

Let overset(to)(u),overset(to)(v) " and " overset(to)(W) be vectors such that overset(to)(u)+overset(to)(v)+overset(to)(W)=overset(to)(0). If |overset(to)(u)|=3.|overset(to)(V)|=4" and " |overset(to)(W)|=5 " then " overset(to)(u).overset(to)(v)+overset(to)(v).overset(to)(w)+overset(to)(w).overset(to)(u) is

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-EXERCISE (Level-2 Single Correct Answer Type Questions)
  1. The point of intersection of the lines r times a=b times a, r times b=...

    Text Solution

    |

  2. If a=a(1)i+a(2)j+a(3)k, b=b(1)i+b(2)j+b(3)k, c=c(1)i+c(2)j+c(3)k, d=d(...

    Text Solution

    |

  3. The value of (b times c)*(a times d)+(c times a)*(b times d)+(a times ...

    Text Solution

    |

  4. The lines r=b-2c+lambda(a+b)" and "r=2b-c+mu(b+c) intersect at the poi...

    Text Solution

    |

  5. If a=i+2j-3k, b=2i+j-k then the vector v satisfying a times v=a times ...

    Text Solution

    |

  6. The value of abs(a times(i timesj))^(2)+abs(a times(j timesk))^(2)+a...

    Text Solution

    |

  7. The locus of a point equidistant from two points with position vectors...

    Text Solution

    |

  8. A vector veca=(x,y,z) makes an obtuse angle with F-axis, and make equa...

    Text Solution

    |

  9. If a times b=c" and "b times c=a, then

    Text Solution

    |

  10. Let OABC be a regular tetrahedron, then angle between edges OA and BC ...

    Text Solution

    |

  11. Let veca=a(1)hati+a(2)hatj+a(3)hatk, vecb=b(1)hati+b(2)hatj+b(3)hatk a...

    Text Solution

    |

  12. The vector vec a has the components 2p and 1 w.r.t. a rectangular ...

    Text Solution

    |

  13. a*((b times c) times (a+(b times c)) is equal to

    Text Solution

    |

  14. If overset(to)(X) "." overset(to)(A) =0, overset(to)(X) "." overset(...

    Text Solution

    |

  15. Given the vectors a=3i-j+5k" and "b=i+2j-3k. A vector c which is perp...

    Text Solution

    |

  16. The unit vector in XOZ plane and making angles 45^@ and 60^@ respectiv...

    Text Solution

    |

  17. If vector vec a+ vec b bisects the angle between vec a and vec b , ...

    Text Solution

    |

  18. The vector bar(AB)=3hati+4hatk and bar(AC)=5hati-2hatj+4hatk are the s...

    Text Solution

    |

  19. A B C D is quadrilateral such that vec A B= vec b , vec A D= vec d , ...

    Text Solution

    |

  20. If vecu=veca-vecb,vecv=veca+vecb and |veca|=|vecb|=2, then |vecuxxvecv...

    Text Solution

    |