Home
Class 12
MATHS
Let alpha=3i+j" and "beta=2i-j+3k." Supp...

Let `alpha=3i+j" and "beta=2i-j+3k." Suppose "beta=beta_(1)-beta_(2)," where "beta_(1)` is parallel to `alpha" and "beta_(2)` is perpendicular to `alpha." If "beta_(1) times beta_(2)=-3/2i+aj+bk`, then a + b = ______

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will break down the vectors and their relationships as described in the question. ### Step 1: Define the vectors Let: - \(\alpha = 3\mathbf{i} + \mathbf{j}\) - \(\beta = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k}\) ### Step 2: Express \(\beta\) in terms of \(\beta_1\) and \(\beta_2\) We have: \[ \beta = \beta_1 - \beta_2 \] where \(\beta_1\) is parallel to \(\alpha\) and \(\beta_2\) is perpendicular to \(\alpha\). ### Step 3: Express \(\beta_1\) Since \(\beta_1\) is parallel to \(\alpha\), we can express it as: \[ \beta_1 = \lambda \alpha \] for some scalar \(\lambda\). ### Step 4: Find \(\beta_2\) From the expression \(\beta = \beta_1 - \beta_2\), we can rearrange to find \(\beta_2\): \[ \beta_2 = \beta_1 - \beta \] ### Step 5: Use the property of perpendicular vectors Since \(\beta_2\) is perpendicular to \(\alpha\), we have: \[ \beta_2 \cdot \alpha = 0 \] ### Step 6: Substitute \(\beta_1\) into the equation Substituting \(\beta_1\) into the equation for \(\beta_2\): \[ \beta_2 = \lambda \alpha - \beta \] Now, substituting \(\alpha\): \[ \beta_2 = \lambda (3\mathbf{i} + \mathbf{j}) - (2\mathbf{i} - \mathbf{j} + 3\mathbf{k}) \] ### Step 7: Calculate the dot product Now, we can calculate the dot product: \[ (\lambda (3\mathbf{i} + \mathbf{j}) - (2\mathbf{i} - \mathbf{j} + 3\mathbf{k})) \cdot (3\mathbf{i} + \mathbf{j}) = 0 \] Expanding this, we get: \[ (\lambda(3) - 2) \cdot 3 + (\lambda(1) + 1) \cdot 1 + (-3\lambda) \cdot 0 = 0 \] This simplifies to: \[ 3\lambda - 6 + \lambda + 1 = 0 \] \[ 4\lambda - 5 = 0 \] \[ \lambda = \frac{5}{4} \] ### Step 8: Find \(\beta_1\) and \(\beta_2\) Now, substituting \(\lambda\) back to find \(\beta_1\): \[ \beta_1 = \frac{5}{4}(3\mathbf{i} + \mathbf{j}) = \frac{15}{4}\mathbf{i} + \frac{5}{4}\mathbf{j} \] Now substituting \(\beta_1\) into the equation for \(\beta_2\): \[ \beta_2 = \left(\frac{15}{4}\mathbf{i} + \frac{5}{4}\mathbf{j}\right) - (2\mathbf{i} - \mathbf{j} + 3\mathbf{k}) \] Calculating this gives: \[ \beta_2 = \left(\frac{15}{4} - 2\right)\mathbf{i} + \left(\frac{5}{4} + 1\right)\mathbf{j} - 3\mathbf{k} \] \[ = \left(\frac{15}{4} - \frac{8}{4}\right)\mathbf{i} + \left(\frac{5}{4} + \frac{4}{4}\right)\mathbf{j} - 3\mathbf{k} \] \[ = \frac{7}{4}\mathbf{i} + \frac{9}{4}\mathbf{j} - 3\mathbf{k} \] ### Step 9: Calculate the cross product Now we need to find \(\beta_1 \times \beta_2\): \[ \beta_1 \times \beta_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{15}{4} & \frac{5}{4} & 0 \\ \frac{7}{4} & \frac{9}{4} & -3 \end{vmatrix} \] Calculating this determinant gives: \[ = \mathbf{i}\left(\frac{5}{4} \cdot (-3) - 0\right) - \mathbf{j}\left(\frac{15}{4} \cdot (-3) - 0\right) + \mathbf{k}\left(\frac{15}{4} \cdot \frac{9}{4} - \frac{5}{4} \cdot \frac{7}{4}\right) \] \[ = -\frac{15}{4}\mathbf{i} + \frac{45}{4}\mathbf{j} + \left(\frac{135}{16} - \frac{35}{16}\right)\mathbf{k} \] \[ = -\frac{15}{4}\mathbf{i} + \frac{45}{4}\mathbf{j} + \frac{100}{16}\mathbf{k} \] \[ = -\frac{15}{4}\mathbf{i} + \frac{45}{4}\mathbf{j} + \frac{25}{4}\mathbf{k} \] ### Step 10: Compare coefficients We know that: \[ \beta_1 \times \beta_2 = -\frac{3}{2}\mathbf{i} + a\mathbf{j} + b\mathbf{k} \] Comparing coefficients gives: \[ -\frac{15}{4} = -\frac{3}{2} \implies a = \frac{45}{4}, \quad b = \frac{25}{4} \] ### Step 11: Find \(a + b\) Now, we calculate: \[ a + b = \frac{45}{4} + \frac{25}{4} = \frac{70}{4} = \frac{35}{2} \] Thus, the final answer is: \[ \boxed{\frac{35}{2}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|65 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|20 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Level-2 Single Correct Answer Type Questions)|32 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Let alpha=3i+j" and "beta=2i-j+3k." If "beta=beta_(1)-beta_(2), " where "beta_(1) is parallel to alpha" and "beta_(2) is perpendicular to alpha , then beta_(1) times beta_(2) is equal to

Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat(k) . If vec(beta)=vec(beta)_(1)-vec(beta)_(2) , where vec(beta)_(1) is parallel to vec(alpha) and vec(beta)_(2) is perpendicular to vec(alpha) then vec(beta)_(1)xx vec(beta)_(2) is equal to :

Let bar(alpha) = 3hat(i) + hat(j) " and " bar(beta)=2hat(i) -hat(j)+3hat(k). "if "bar(beta)=bar(beta)_(1)-bar(beta)_(2) where bar(beta)_(1) is parallel to bar(alpha) and bar(beta)_(2) perpendicular to bar(alpha) then bar(beta)_(1)xx bar(beta)_(2) is equal to

If with reference to a right handed system of mutually perpendicular unit vectors hat i,hat j,hat k we have vec alpha=3hat i-hat j, and vec beta=2hat i+hat j-3hat k Express vec beta in the form vec beta=vec beta_(1)+vec beta_(2), where vec beta_(1) is parallel to vec alpha and vec beta_(2) is perpendicular to vec alpha .

If vec alpha=3vec i+4vec j+5vec k and vec beta=2vec i+vec j-4vec k ,then express vec beta in the form of vec beta=vec beta_(1)+vec beta_(2), where vec beta_(1) is parallel to vec alpha and vec beta_(2) is perpendicular to vec alpha .

vec alpha=3hat i+4hat j+5hat k and vec beta=2hat i+hat j-4hat k then express vec beta in the form of vec beta=vec beta_(1)+vec beta_(2) where vec beta_(1) is parallel to vec alpha and vec beta_(2) is perpendicular to vec alpha .

If vec alpha=3hat i+4hat j+5hat k and vec beta=2hat i+hat j-4hat k then express vec beta in the form vec beta_(1)+vec beta_(2), where vec beta_(1) is parallel to vec alpha and vec beta is perpendicular to vec alpha.

alpha and beta are acute angles and cos2 alpha=(3cos2 beta-1)/(3-cos2 beta) then tan alpha cot beta=

Let -(1)/(6) beta_(1) and alpha_(2)>beta_(2), then alpha_(1)+beta_(2) equals

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-EXERCISE (Numerical Answer Type Questions)
  1. Let ABCD be a parallelogram whose diagonals intersect at point P. Supp...

    Text Solution

    |

  2. If ABCDEF is a regular hexagon , then bar(AB) + bar(AC) + bar(AE) + ...

    Text Solution

    |

  3. Suppose a and b are two non-zero vectors and angle between a and b is ...

    Text Solution

    |

  4. Suppose a, b, c are three vectors such that abs(a)=7. If a + b + c = 0...

    Text Solution

    |

  5. Suppose a, b, c are three vectors such that a+b+c=0, abs(a)=abs(b)=1" ...

    Text Solution

    |

  6. Suppose a, b, c are three vectors such that abs(a)=abs(b)=abs(c)=1" an...

    Text Solution

    |

  7. Suppose -i+j-k bisects the angle between the vector c and 3i+4j." If "...

    Text Solution

    |

  8. Suppose a, b, c gt 0 and are respectively the pth, qth and rth terms o...

    Text Solution

    |

  9. Let a=2lambda^(2)i+4lambdaj+k" and "b=7i-2j+lambdak. The number of val...

    Text Solution

    |

  10. Suppose a, b, c are three non-coplanar vectors. Suppose Delta=|{:(a*...

    Text Solution

    |

  11. Suppose a, b, c are three non-coplanar vectors, then ((a+b+c)*((a+c)...

    Text Solution

    |

  12. Suppose A(1), A(2), …, A(5) are vertices of a regular pentagon with O ...

    Text Solution

    |

  13. Suppose a, b, c are three non-zero vectors such that b and c are non-c...

    Text Solution

    |

  14. Let alpha=3i+j" and "beta=2i-j+3k." Suppose "beta=beta(1)-beta(2)," wh...

    Text Solution

    |

  15. Let a=i-2j+k" and "b=i-j+lambdak, (where lambda in Z) be two vectors. ...

    Text Solution

    |

  16. The vectors, p=(a+1)i+aj+ak, q=ai+(a+1)j+ak" and "r=ai+aj+(a+q)k. If 3...

    Text Solution

    |

  17. Suppose OA=2i+2j+k, OB=3i+4j+12k. If OC=1/16(45i+aj+bk) is internal an...

    Text Solution

    |

  18. Let A=(2alpha, 1,alpha), B=(2, 1, 3), C=3i-j+4k." If "AB times C=5i-9j...

    Text Solution

    |