Home
Class 12
MATHS
If a=1/sqrt(10)(3i+k)" and "b=1/7(2i+3j-...

If `a=1/sqrt(10)(3i+k)" and "b=1/7(2i+3j-6k)`, then the value of `(2a-b).[(a times b) times (a+2b)]` is

A

3

B

-5

C

-3

D

5

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute the expression \((2\mathbf{a} - \mathbf{b}) \cdot [(\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} + 2\mathbf{b})]\). ### Step-by-Step Solution: 1. **Define the Vectors**: Given: \[ \mathbf{a} = \frac{1}{\sqrt{10}}(3\mathbf{i} + \mathbf{k}), \quad \mathbf{b} = \frac{1}{7}(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}) \] 2. **Calculate \(2\mathbf{a} - \mathbf{b}\)**: \[ 2\mathbf{a} = 2 \cdot \frac{1}{\sqrt{10}}(3\mathbf{i} + \mathbf{k}) = \frac{2}{\sqrt{10}}(3\mathbf{i} + \mathbf{k}) = \frac{6}{\sqrt{10}}\mathbf{i} + \frac{2}{\sqrt{10}}\mathbf{k} \] \[ \mathbf{b} = \frac{1}{7}(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}) = \frac{2}{7}\mathbf{i} + \frac{3}{7}\mathbf{j} - \frac{6}{7}\mathbf{k} \] Now, compute \(2\mathbf{a} - \mathbf{b}\): \[ 2\mathbf{a} - \mathbf{b} = \left(\frac{6}{\sqrt{10}} - \frac{2}{7}\right)\mathbf{i} - \frac{3}{7}\mathbf{j} + \left(\frac{2}{\sqrt{10}} + \frac{6}{7}\right)\mathbf{k} \] 3. **Calculate \(\mathbf{a} \times \mathbf{b}\)**: Using the determinant method: \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{3}{\sqrt{10}} & 0 & \frac{1}{\sqrt{10}} \\ \frac{2}{7} & \frac{3}{7} & -\frac{6}{7} \end{vmatrix} \] Calculate the determinant to find \(\mathbf{a} \times \mathbf{b}\). 4. **Calculate \(\mathbf{a} + 2\mathbf{b}\)**: \[ 2\mathbf{b} = \frac{2}{7}(2\mathbf{i} + 3\mathbf{j} - 6\mathbf{k}) = \frac{4}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} - \frac{12}{7}\mathbf{k} \] \[ \mathbf{a} + 2\mathbf{b} = \frac{1}{\sqrt{10}}(3\mathbf{i} + \mathbf{k}) + \left(\frac{4}{7}\mathbf{i} + \frac{6}{7}\mathbf{j} - \frac{12}{7}\mathbf{k}\right) \] 5. **Calculate \((\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} + 2\mathbf{b})\)**: Use the vector triple product identity: \[ \mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z})\mathbf{y} - (\mathbf{x} \cdot \mathbf{y})\mathbf{z} \] 6. **Final Dot Product**: Now compute the dot product: \[ (2\mathbf{a} - \mathbf{b}) \cdot [(\mathbf{a} \times \mathbf{b}) \times (\mathbf{a} + 2\mathbf{b})] \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|20 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|18 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If a and b are vectors in space given by a=(hat(i)-2hat(j))/(sqrt(5)) and b=(2hat(i)+hat(j)+3hat(k))/(sqrt(14)) , then the value of (2a+b)*[(atimesb)times(a-2b)] is

If a=1/(sqrt(10))(3 hat i+ hat k)"and" vec b=1/7(2 hat i+3 hat j-6 hat k), then the value of (2 vec a- vec b)dot[( vec axx vec b)xx( vec a"+"2 vec b)] is: (1) -5 (2) -3 (3) 5 (4) 3

If bar(a)=(1)/(sqrt(10))(3hat(i)+hat(k)) and bar(b)=(1)/(7)(2hat(i)+3hat(j)-6hat(k)) then the value of (2bar(a)-bar(b)*((bar(a)timesbar(b))times(bar(a)+2bar(b))} is equal to

(1)/(sqrt(10))(3hat j+hat k) and vec b=(2hat i+3hat j-6hat k) then the value of (2vec a-vec b)*[(vec a xxvec b)xx(vec a+2vec b)] is:

If bar(a)=(3hat i-hat j)/(sqrt(10)),bar(b)=(hat i+3hat j+hat k)/(sqrt(11)), then the value of (2bar(a)+bar(b))*[(bar(a)timesbar(b))times(bar(a)-3bar(b))]

If a and b are vectors in space given by vec a=(hat i-2hat j)/(sqrt(5)) and vec b=(hat 2i+hat j+3hat k)/(sqrt(14)), then find the value of (2vec a+vec b)*[(vec a xxvec b)xx(vec a-2vec b)]

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS
  1. vectors veca=i-j+2k , vecb=2i+4j+k and vecc=lambdai+j+muk are mutually...

    Text Solution

    |

  2. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  3. If a=1/sqrt(10)(3i+k)" and "b=1/7(2i+3j-6k), then the value of (2a-b)....

    Text Solution

    |

  4. The vectors a and b are not perpendicular and c and d are two vectors ...

    Text Solution

    |

  5. If the vectors pi + j + k, i + qj + k and i + j + rk, where pneqnerne1...

    Text Solution

    |

  6. Let a,b and c be three non-zero vectors which are pairwise non-colline...

    Text Solution

    |

  7. Let hata and hatb be two unit vectors. If the vectors vecc=hata+2hatb ...

    Text Solution

    |

  8. Let ABCD be a parallelogram such that vec AB = vec q,vec AD = vec p a...

    Text Solution

    |

  9. The vector bar(AB)=3hati+4hatk and bar(AC)=5hati-2hatj+4hatk are the s...

    Text Solution

    |

  10. If veca and vecb are non colinear vectors, then the value of alpha for...

    Text Solution

    |

  11. Let vec a = 2hat i-hat j+hat k,vec b=hat i+ 2hat j-hat k and vec c=h...

    Text Solution

    |

  12. If [axxb bxxc c xxa]=lambda[abc]^(2), then lambda is euqual to

    Text Solution

    |

  13. If abs(a)=2, abs(b)=3" and "abs(2a-b)=5," then "abs(2a+b) equals

    Text Solution

    |

  14. If abs(c)^(2)=60" and "c times (i+j+5k)=0, then a value of c*(-7i+2j+3...

    Text Solution

    |

  15. If x, y and z are three unit vectors in three dimensional space, then ...

    Text Solution

    |

  16. If x=3i-6j-k, y=i+4j-3k" and "z=3i-4j-12k, then the magnitude of the p...

    Text Solution

    |

  17. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  18. Given a parallelogram ABCD. If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| ...

    Text Solution

    |

  19. Let veca and vecb be two unit vectors such that |veca+vecb|=sqrt3 if v...

    Text Solution

    |

  20. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |