Home
Class 12
MATHS
If x=3i-6j-k, y=i+4j-3k" and "z=3i-4j-12...

If `x=3i-6j-k, y=i+4j-3k" and "z=3i-4j-12k`, then the magnitude of the projection of `x times y` on z is

A

12

B

15

C

14

D

13

Text Solution

AI Generated Solution

The correct Answer is:
To find the magnitude of the projection of \( \mathbf{x} \times \mathbf{y} \) on \( \mathbf{z} \), we will follow these steps: ### Step 1: Compute the cross product \( \mathbf{x} \times \mathbf{y} \) Given: \[ \mathbf{x} = 3\mathbf{i} - 6\mathbf{j} - \mathbf{k} \] \[ \mathbf{y} = \mathbf{i} + 4\mathbf{j} - 3\mathbf{k} \] The cross product \( \mathbf{x} \times \mathbf{y} \) can be calculated using the determinant of a matrix: \[ \mathbf{x} \times \mathbf{y} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 3 & -6 & -1 \\ 1 & 4 & -3 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} -6 & -1 \\ 4 & -3 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 3 & -1 \\ 1 & -3 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 3 & -6 \\ 1 & 4 \end{vmatrix} \] Calculating each of the 2x2 determinants: 1. \( \begin{vmatrix} -6 & -1 \\ 4 & -3 \end{vmatrix} = (-6)(-3) - (-1)(4) = 18 + 4 = 22 \) 2. \( \begin{vmatrix} 3 & -1 \\ 1 & -3 \end{vmatrix} = (3)(-3) - (-1)(1) = -9 + 1 = -8 \) 3. \( \begin{vmatrix} 3 & -6 \\ 1 & 4 \end{vmatrix} = (3)(4) - (-6)(1) = 12 + 6 = 18 \) Putting it all together: \[ \mathbf{x} \times \mathbf{y} = 22\mathbf{i} + 8\mathbf{j} + 18\mathbf{k} \] ### Step 2: Compute the dot product \( (\mathbf{x} \times \mathbf{y}) \cdot \mathbf{z} \) Given: \[ \mathbf{z} = 3\mathbf{i} - 4\mathbf{j} - 12\mathbf{k} \] Now compute the dot product: \[ (\mathbf{x} \times \mathbf{y}) \cdot \mathbf{z} = (22\mathbf{i} + 8\mathbf{j} + 18\mathbf{k}) \cdot (3\mathbf{i} - 4\mathbf{j} - 12\mathbf{k}) \] \[ = 22 \cdot 3 + 8 \cdot (-4) + 18 \cdot (-12) \] \[ = 66 - 32 - 216 \] \[ = 66 - 32 - 216 = -182 \] ### Step 3: Compute the magnitude of \( \mathbf{z} \) \[ |\mathbf{z}| = \sqrt{3^2 + (-4)^2 + (-12)^2} = \sqrt{9 + 16 + 144} = \sqrt{169} = 13 \] ### Step 4: Compute the magnitude of the projection The magnitude of the projection of \( \mathbf{x} \times \mathbf{y} \) on \( \mathbf{z} \) is given by: \[ \text{Magnitude of projection} = \frac{|(\mathbf{x} \times \mathbf{y}) \cdot \mathbf{z}|}{|\mathbf{z}|} \] \[ = \frac{|-182|}{13} = \frac{182}{13} \approx 14 \] ### Final Answer The magnitude of the projection of \( \mathbf{x} \times \mathbf{y} \) on \( \mathbf{z} \) is \( \frac{182}{13} \) or approximately \( 14 \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|20 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|18 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If u=i+j-k, v=2i+j+k" and "w=i+j+2k then the magnitude of projection of u times v on w is given by

If vec x=3hati - 6hatj - hatk , vec y=hat i+4hat j-3hat k and vec z=3hat i-4hat j-12hat k then the magnitude of the scalar projection of vec x timesvec y on vec z is:

Let x=2i+j-2k" and "y=i+j . If z is a vector such that x.z=abs(z), abs(z-x)=2sqrt(2) and the angle between x times y and z is 30^(@) , then the magnitude of the vector (x timesy) timesz is:

If a=2i-3j+5k, b=3i-4j+5k" and "c=5i-3j-2k then volume of the parallelopiped with coterminus edges a+b, b+c, c+a is _______

A=4i+4j-4k and B=3i+j4k , then angle between vectors A and B is

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS
  1. If abs(c)^(2)=60" and "c times (i+j+5k)=0, then a value of c*(-7i+2j+3...

    Text Solution

    |

  2. If x, y and z are three unit vectors in three dimensional space, then ...

    Text Solution

    |

  3. If x=3i-6j-k, y=i+4j-3k" and "z=3i-4j-12k, then the magnitude of the p...

    Text Solution

    |

  4. Let vec(a) , vec(b) and vec(c) be three non-zero vectors such that no ...

    Text Solution

    |

  5. Given a parallelogram ABCD. If |vec(AB)|=a, |vec(AD)| = b & |vec(AC)| ...

    Text Solution

    |

  6. Let veca and vecb be two unit vectors such that |veca+vecb|=sqrt3 if v...

    Text Solution

    |

  7. Let a, b and c be three unit vectors such that atimes(btimesc)=(sqrt(3...

    Text Solution

    |

  8. In a triangle ABC , right angled at the vertex A , if the position vec...

    Text Solution

    |

  9. Let ABC be a triangle whose circumcenter is at P, if the positions vec...

    Text Solution

    |

  10. Let a= 2hat(i) -2hat(k) , b=hat(i) +hat(j) and c be a vectors suc...

    Text Solution

    |

  11. The area (in sq units) of the parallelogram whose diagonals are along ...

    Text Solution

    |

  12. If b=3j+4k, is written as sum of a vector b(1) parallel to a=i+j and a...

    Text Solution

    |

  13. Let vec u be a vector coplanar with the vectors vec a = 2 hat i + 3 ha...

    Text Solution

    |

  14. If a, b and c are unit vectors such that a+2b+2c=0," then "abs(a times...

    Text Solution

    |

  15. If the position vectors of the vertices A,B and C of a triangleABC are...

    Text Solution

    |

  16. Let a=i+j+k, c=j-k and a vector b is such that a times b=c" and "a*b=3...

    Text Solution

    |

  17. Let alpha = (lambda-2) a ne b and beta =(4lambda -2)a + 3b be two give...

    Text Solution

    |

  18. Let sqrt(3i) + hatj , hati + sqrt(3j) and beta hati + (1- beta)hatj r...

    Text Solution

    |

  19. Let a= hat(i) + 2hat(j) + 4hat(k) " " b= hat(i) = lambda hat(j) +...

    Text Solution

    |

  20. Let a=hati - hatj, b=hati + hatj + hatk and c be a vector such that a ...

    Text Solution

    |