Home
Class 12
MATHS
Let alpha=3i+j" and "beta=2i-j+3k." If "...

Let `alpha=3i+j" and "beta=2i-j+3k." If "beta=beta_(1)-beta_(2), " where "beta_(1)` is parallel to `alpha" and "beta_(2)` is perpendicular to `alpha`, then `beta_(1) times beta_(2)` is equal to

A

`1/2(-3i+9j+5k)`

B

`1/2(3i-9j+5k)`

C

`3i-9j-5k`

D

`-3i+9j+5k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the cross product of the vectors \(\beta_1\) and \(\beta_2\), where \(\beta_1\) is parallel to \(\alpha\) and \(\beta_2\) is perpendicular to \(\alpha\). Given: \[ \alpha = 3\mathbf{i} + \mathbf{j} \] \[ \beta = 2\mathbf{i} - \mathbf{j} + 3\mathbf{k} \] ### Step 1: Express \(\beta_1\) and \(\beta_2\) Since \(\beta_1\) is parallel to \(\alpha\), we can express \(\beta_1\) as: \[ \beta_1 = \lambda \alpha = \lambda (3\mathbf{i} + \mathbf{j}) = 3\lambda \mathbf{i} + \lambda \mathbf{j} \] ### Step 2: Express \(\beta_2\) We know that: \[ \beta = \beta_1 - \beta_2 \implies \beta_2 = \beta_1 - \beta \] Substituting for \(\beta_1\): \[ \beta_2 = (3\lambda \mathbf{i} + \lambda \mathbf{j}) - (2\mathbf{i} - \mathbf{j} + 3\mathbf{k}) \] \[ = (3\lambda - 2)\mathbf{i} + (\lambda + 1)\mathbf{j} - 3\mathbf{k} \] ### Step 3: Use the perpendicular condition Since \(\beta_2\) is perpendicular to \(\alpha\), we have: \[ \beta_2 \cdot \alpha = 0 \] Calculating the dot product: \[ (3\lambda - 2)(3) + (\lambda + 1)(1) + (-3)(0) = 0 \] \[ 9\lambda - 6 + \lambda + 1 = 0 \] \[ 10\lambda - 5 = 0 \implies \lambda = \frac{1}{2} \] ### Step 4: Find \(\beta_1\) and \(\beta_2\) Now substituting \(\lambda\) back into \(\beta_1\): \[ \beta_1 = 3\left(\frac{1}{2}\right)\mathbf{i} + \left(\frac{1}{2}\right)\mathbf{j} = \frac{3}{2}\mathbf{i} + \frac{1}{2}\mathbf{j} \] Now substituting \(\lambda\) into \(\beta_2\): \[ \beta_2 = \left(3\left(\frac{1}{2}\right) - 2\right)\mathbf{i} + \left(\frac{1}{2} + 1\right)\mathbf{j} - 3\mathbf{k} \] \[ = \left(\frac{3}{2} - 2\right)\mathbf{i} + \left(\frac{3}{2}\right)\mathbf{j} - 3\mathbf{k} \] \[ = -\frac{1}{2}\mathbf{i} + \frac{3}{2}\mathbf{j} - 3\mathbf{k} \] ### Step 5: Calculate the cross product \(\beta_1 \times \beta_2\) Now we compute the cross product: \[ \beta_1 \times \beta_2 = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ \frac{3}{2} & \frac{1}{2} & 0 \\ -\frac{1}{2} & \frac{3}{2} & -3 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \left(\frac{1}{2} \cdot (-3) - 0 \cdot \frac{3}{2}\right) - \mathbf{j} \left(\frac{3}{2} \cdot (-3) - 0 \cdot -\frac{1}{2}\right) + \mathbf{k} \left(\frac{3}{2} \cdot \frac{3}{2} - \frac{1}{2} \cdot -\frac{1}{2}\right) \] \[ = \mathbf{i} \left(-\frac{3}{2}\right) - \mathbf{j} \left(-\frac{9}{2}\right) + \mathbf{k} \left(\frac{9}{4} + \frac{1}{4}\right) \] \[ = -\frac{3}{2}\mathbf{i} + \frac{9}{2}\mathbf{j} + \frac{10}{4}\mathbf{k} \] \[ = -\frac{3}{2}\mathbf{i} + \frac{9}{2}\mathbf{j} + \frac{5}{2}\mathbf{k} \] ### Final Answer Thus, the result of \(\beta_1 \times \beta_2\) is: \[ \beta_1 \times \beta_2 = -\frac{3}{2}\mathbf{i} + \frac{9}{2}\mathbf{j} + \frac{5}{2}\mathbf{k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|20 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Numerical Answer Type Questions)|18 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Let alpha=3i+j" and "beta=2i-j+3k." Suppose "beta=beta_(1)-beta_(2)," where "beta_(1) is parallel to alpha" and "beta_(2) is perpendicular to alpha." If "beta_(1) times beta_(2)=-3/2i+aj+bk , then a + b = ______

Let hat(alpha) = 3 hat(i)+hat(j) and hat(beta)= 2 hat(i)-hat(j)+3hat(k) . If vec(beta)=vec(beta)_(1)-vec(beta)_(2) , where vec(beta)_(1) is parallel to vec(alpha) and vec(beta)_(2) is perpendicular to vec(alpha) then vec(beta)_(1)xx vec(beta)_(2) is equal to :

Let bar(alpha) = 3hat(i) + hat(j) " and " bar(beta)=2hat(i) -hat(j)+3hat(k). "if "bar(beta)=bar(beta)_(1)-bar(beta)_(2) where bar(beta)_(1) is parallel to bar(alpha) and bar(beta)_(2) perpendicular to bar(alpha) then bar(beta)_(1)xx bar(beta)_(2) is equal to

If vec alpha=3vec i+4vec j+5vec k and vec beta=2vec i+vec j-4vec k ,then express vec beta in the form of vec beta=vec beta_(1)+vec beta_(2), where vec beta_(1) is parallel to vec alpha and vec beta_(2) is perpendicular to vec alpha .

vec alpha=3hat i+4hat j+5hat k and vec beta=2hat i+hat j-4hat k then express vec beta in the form of vec beta=vec beta_(1)+vec beta_(2) where vec beta_(1) is parallel to vec alpha and vec beta_(2) is perpendicular to vec alpha .

If with reference to a right handed system of mutually perpendicular unit vectors hat i,hat j,hat k we have vec alpha=3hat i-hat j, and vec beta=2hat i+hat j-3hat k Express vec beta in the form vec beta=vec beta_(1)+vec beta_(2), where vec beta_(1) is parallel to vec alpha and vec beta_(2) is perpendicular to vec alpha .

If vec alpha=3hat i+4hat j+5hat k and vec beta=2hat i+hat j-4hat k then express vec beta in the form vec beta_(1)+vec beta_(2), where vec beta_(1) is parallel to vec alpha and vec beta is perpendicular to vec alpha.

Let -(1)/(6) beta_(1) and alpha_(2)>beta_(2), then alpha_(1)+beta_(2) equals

Let -pi/6 beta_1 and alpha_2>beta_2 then alpha_1+beta_2 equals

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS
  1. Let a= 2hat(i) -2hat(k) , b=hat(i) +hat(j) and c be a vectors suc...

    Text Solution

    |

  2. The area (in sq units) of the parallelogram whose diagonals are along ...

    Text Solution

    |

  3. If b=3j+4k, is written as sum of a vector b(1) parallel to a=i+j and a...

    Text Solution

    |

  4. Let vec u be a vector coplanar with the vectors vec a = 2 hat i + 3 ha...

    Text Solution

    |

  5. If a, b and c are unit vectors such that a+2b+2c=0," then "abs(a times...

    Text Solution

    |

  6. If the position vectors of the vertices A,B and C of a triangleABC are...

    Text Solution

    |

  7. Let a=i+j+k, c=j-k and a vector b is such that a times b=c" and "a*b=3...

    Text Solution

    |

  8. Let alpha = (lambda-2) a ne b and beta =(4lambda -2)a + 3b be two give...

    Text Solution

    |

  9. Let sqrt(3i) + hatj , hati + sqrt(3j) and beta hati + (1- beta)hatj r...

    Text Solution

    |

  10. Let a= hat(i) + 2hat(j) + 4hat(k) " " b= hat(i) = lambda hat(j) +...

    Text Solution

    |

  11. Let a=hati - hatj, b=hati + hatj + hatk and c be a vector such that a ...

    Text Solution

    |

  12. Let veca = 2hati+(lambda)1hatj+3hatk , vec(b)=4hati+(3-(labda)2)hatj+6...

    Text Solution

    |

  13. Let a=hat(i)+hat(j)+sqrt(2)hat(k),b=b(1)hat(i)+b(2)hat(j)+sqrt(2)hat(...

    Text Solution

    |

  14. The sum of the distinct real values of mu for which the vectors, muha...

    Text Solution

    |

  15. Let a , b and c be three unit vectors out of which vectors b an...

    Text Solution

    |

  16. Let alpha=3i+j" and "beta=2i-j+3k." If "beta=beta(1)-beta(2), " where ...

    Text Solution

    |

  17. Let a=3hat(i) +2hat(j)+xhat(k) " and " b=hat(i)-hat(j) +hat(k) for s...

    Text Solution

    |

  18. If unit vector a makes angles pi/3 with i, pi//4 with j and theta in (...

    Text Solution

    |

  19. if the volume of parallelopiped formed by the vectors hati+lamdahatj+h...

    Text Solution

    |

  20. Let a=3hati + 2hatj + 2hatk and b= hati + 2hatj - 2hatk be two vectors...

    Text Solution

    |