Home
Class 12
MATHS
If a, b and c are three unit vectors sat...

If a, b and c are three unit vectors satisfying `2a times(a timesb)+c=0` then the acute angle between a and b is

A

`pi/5`

B

`pi/4`

C

`pi/3`

D

`pi/6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the acute angle between the unit vectors \( \mathbf{a} \) and \( \mathbf{b} \) given the equation: \[ 2 \mathbf{a} \times (\mathbf{a} \times \mathbf{b}) + \mathbf{c} = \mathbf{0} \] ### Step-by-Step Solution: 1. **Rearranging the Equation**: Start by rearranging the given equation: \[ 2 \mathbf{a} \times (\mathbf{a} \times \mathbf{b}) = -\mathbf{c} \] 2. **Using the Vector Triple Product Identity**: We can use the vector triple product identity: \[ \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w} \] Applying this to \( \mathbf{a} \times (\mathbf{a} \times \mathbf{b}) \): \[ \mathbf{a} \times (\mathbf{a} \times \mathbf{b}) = (\mathbf{a} \cdot \mathbf{b}) \mathbf{a} - (\mathbf{a} \cdot \mathbf{a}) \mathbf{b} \] Since \( \mathbf{a} \) is a unit vector, \( \mathbf{a} \cdot \mathbf{a} = 1 \): \[ \mathbf{a} \times (\mathbf{a} \times \mathbf{b}) = (\mathbf{a} \cdot \mathbf{b}) \mathbf{a} - \mathbf{b} \] 3. **Substituting Back**: Substitute this back into the rearranged equation: \[ 2 \left( (\mathbf{a} \cdot \mathbf{b}) \mathbf{a} - \mathbf{b} \right) = -\mathbf{c} \] This simplifies to: \[ 2 (\mathbf{a} \cdot \mathbf{b}) \mathbf{a} - 2 \mathbf{b} = -\mathbf{c} \] 4. **Rearranging Again**: Rearranging gives: \[ 2 (\mathbf{a} \cdot \mathbf{b}) \mathbf{a} - \mathbf{c} = 2 \mathbf{b} \] 5. **Taking Magnitudes**: Since \( \mathbf{c} \) is also a unit vector, we take the magnitude of both sides: \[ \|2 (\mathbf{a} \cdot \mathbf{b}) \mathbf{a} - \mathbf{c}\| = 1 \] 6. **Squaring Both Sides**: Squaring both sides gives: \[ \|2 (\mathbf{a} \cdot \mathbf{b}) \mathbf{a}\|^2 + \|\mathbf{c}\|^2 - 2 \cdot 2 (\mathbf{a} \cdot \mathbf{b}) \mathbf{a} \cdot \mathbf{c} = 1 \] Since \( \|\mathbf{c}\|^2 = 1 \): \[ 4 (\mathbf{a} \cdot \mathbf{b})^2 + 1 - 4 (\mathbf{a} \cdot \mathbf{b}) \cdot (\mathbf{a} \cdot \mathbf{c}) = 1 \] 7. **Simplifying**: This simplifies to: \[ 4 (\mathbf{a} \cdot \mathbf{b})^2 - 4 (\mathbf{a} \cdot \mathbf{b}) \cdot (\mathbf{a} \cdot \mathbf{c}) = 0 \] Factoring out \( 4 (\mathbf{a} \cdot \mathbf{b}) \): \[ 4 (\mathbf{a} \cdot \mathbf{b}) \left( (\mathbf{a} \cdot \mathbf{b}) - (\mathbf{a} \cdot \mathbf{c}) \right) = 0 \] 8. **Finding the Angle**: This gives two cases: - \( \mathbf{a} \cdot \mathbf{b} = 0 \) (which is not the case as we need an acute angle) - \( \mathbf{a} \cdot \mathbf{b} = \mathbf{a} \cdot \mathbf{c} \) Since \( \mathbf{a} \) and \( \mathbf{b} \) are unit vectors, we have: \[ \cos \theta = \mathbf{a} \cdot \mathbf{b} \] 9. **Using the Cosine Formula**: From the earlier steps, we derived that: \[ 4 \cos^2 \theta = 3 \implies \cos^2 \theta = \frac{3}{4} \implies \cos \theta = \pm \frac{\sqrt{3}}{2} \] Since we want the acute angle, we take: \[ \theta = \frac{\pi}{6} \text{ or } 30^\circ \] ### Final Answer: The acute angle between vectors \( \mathbf{a} \) and \( \mathbf{b} \) is \( 30^\circ \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|65 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If a,b and c are three unit vectors equally inclined to each other at angle theta . Then, angle between a and the plane of b and c is

If hat a,hat b,hat c are unit vectors satisfying hat a-sqrt(3)hat b+hat c=0 then the angle between the vectors hat a and hat c is (A) (pi)/(4) (B) (pi)/(3) (C) (pi)/(6) (D) (pi)/(2)

If a, b and c are any three vectors, then a times (b times c)=(a times b) times c if and only if

If a, b and c are unit vectors such that a+2b+2c=0," then "abs(a times c) is equal to

Let bar(a),bar(b) and bar(c) be three vectors having magnitudes 1,1 and 2 respectively. If bar(a)times(bar(a)times bar(c))-bar(b)=0 then the acute angle between bar(a) and bar(c) is

If three unit vectors vec a,vec b, and vec c satisfy vec a+vec b+vec c=0, then find the angle between vec a and vec b

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS
  1. Let vec u , vec v and vec w be vector such vec u+ vec v+ vec w= ...

    Text Solution

    |

  2. If a and b are two non-parallel vectors having equal magnitude, then t...

    Text Solution

    |

  3. Let a, b,c be distinct non-negative numbers. If the vectors ai + aj + ...

    Text Solution

    |

  4. Let x, y and z be unit vectors such that abs(x-y)^(2)+abs(y-z)^(2)+a...

    Text Solution

    |

  5. If a, b and c are three unit vectors satisfying 2a times(a timesb)+c=0...

    Text Solution

    |

  6. If b=i-j+3k, c=j+2k" and "a is a unit vector, then the maximum value o...

    Text Solution

    |

  7. If a, b and c are non-zero vectors such that a times b=c, b times c=a ...

    Text Solution

    |

  8. Let vec O A= vec a , vec O B=10 vec a+2 vec b ,a n d vec O C=bw h e r...

    Text Solution

    |

  9. If a and b are two vectors such that 2a+b=e(1)" and "a+2b=e(2), where ...

    Text Solution

    |

  10. If u, v, w are unit vectors satisfying 2u+2v+2w=0," then "abs(u-v) equ...

    Text Solution

    |

  11. Let barV = 2i + j - k and barW = i + 3k If barU is a unit vector, th...

    Text Solution

    |

  12. Unit vectors a, b, c are coplanar. A unit vector d is perpendicular to...

    Text Solution

    |

  13. Let x=2i+j-2k" and "y=i+j. If z is a vector such that x.z=abs(z), abs(...

    Text Solution

    |

  14. From a point A with position vector p(i+j+k), AB and AC are drawn perp...

    Text Solution

    |

  15. Three vector a, b and c are such that abs(a)=1, abs(b)=2, abs(c)=4" an...

    Text Solution

    |

  16. If a, b and c are non-collinear unit vectors also b, c are non-colline...

    Text Solution

    |

  17. bar a=2 bar i+bar j-2bar k and bar b=bar i+bar j if bar c is a vecto...

    Text Solution

    |

  18. Let an angle between a and b be 2pi//3. If abs(b)=2abs(a) and the vect...

    Text Solution

    |

  19. If three vectors V(1)=alphai+j+k, V(2)=i+betaj-2k" and "V(3)=i+j are c...

    Text Solution

    |

  20. Let OA=a=1/2(i+j-2k), OC=b=i-2j+k" and "OB=10a+2b. Let p (in ("unit")^...

    Text Solution

    |