Home
Class 12
MATHS
Unit vectors a, b, c are coplanar. A uni...

Unit vectors a, b, c are coplanar. A unit vector d is perpendicular to them. If
`(a times b) times (c times d)=1/6i-1/3j+1/3k`
and the angle between a and b is `30^(@)`, then c is/are

A

`pm1/3(-i-2j+2k)`

B

`1/3(2i+j-k)`

C

`pm1/3(-i+2j-2k)`

D

`1/3(-2i-2j+k)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the unit vector \( \mathbf{c} \) given that the unit vectors \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) are coplanar, and a unit vector \( \mathbf{d} \) is perpendicular to them. We also know that: \[ (\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = \frac{1}{6} \mathbf{i} - \frac{1}{3} \mathbf{j} + \frac{1}{3} \mathbf{k} \] and the angle between \( \mathbf{a} \) and \( \mathbf{b} \) is \( 30^\circ \). ### Step 1: Understand the cross product identity Using the vector triple product identity, we have: \[ \mathbf{u} \times (\mathbf{v} \times \mathbf{w}) = (\mathbf{u} \cdot \mathbf{w}) \mathbf{v} - (\mathbf{u} \cdot \mathbf{v}) \mathbf{w} \] In our case, we can let \( \mathbf{u} = \mathbf{a} \), \( \mathbf{v} = \mathbf{b} \), and \( \mathbf{w} = \mathbf{c} \times \mathbf{d} \). ### Step 2: Apply the identity Applying the identity, we get: \[ (\mathbf{a} \times \mathbf{b}) \times (\mathbf{c} \times \mathbf{d}) = (\mathbf{a} \cdot \mathbf{d}) \mathbf{c} - (\mathbf{a} \cdot \mathbf{c}) \mathbf{d} \] ### Step 3: Set up the equation We can equate this to the given vector: \[ (\mathbf{a} \cdot \mathbf{d}) \mathbf{c} - (\mathbf{a} \cdot \mathbf{c}) \mathbf{d} = \frac{1}{6} \mathbf{i} - \frac{1}{3} \mathbf{j} + \frac{1}{3} \mathbf{k} \] ### Step 4: Analyze the coplanarity condition Since \( \mathbf{a}, \mathbf{b}, \mathbf{c} \) are coplanar, the scalar triple product \( \mathbf{a} \cdot (\mathbf{b} \times \mathbf{c}) = 0 \). This implies that: \[ \mathbf{a} \cdot \mathbf{c} = 0 \] ### Step 5: Substitute and simplify Substituting \( \mathbf{a} \cdot \mathbf{c} = 0 \) into our equation gives: \[ (\mathbf{a} \cdot \mathbf{d}) \mathbf{c} = \frac{1}{6} \mathbf{i} - \frac{1}{3} \mathbf{j} + \frac{1}{3} \mathbf{k} \] ### Step 6: Find \( \mathbf{a} \cdot \mathbf{d} \) Since \( \mathbf{d} \) is a unit vector and is perpendicular to \( \mathbf{a}, \mathbf{b}, \mathbf{c} \), we can denote \( \mathbf{d} \) in terms of \( \mathbf{a} \) and \( \mathbf{b} \). The angle between \( \mathbf{a} \) and \( \mathbf{b} \) is \( 30^\circ \), thus: \[ \mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(30^\circ) = 1 \cdot 1 \cdot \frac{\sqrt{3}}{2} = \frac{\sqrt{3}}{2} \] ### Step 7: Solve for \( \mathbf{c} \) Now, we can express \( \mathbf{c} \): \[ \mathbf{c} = \frac{1}{\mathbf{a} \cdot \mathbf{d}} \left( \frac{1}{6} \mathbf{i} - \frac{1}{3} \mathbf{j} + \frac{1}{3} \mathbf{k} \right) \] ### Step 8: Normalize \( \mathbf{c} \) Since \( \mathbf{c} \) is a unit vector, we need to ensure that its magnitude is 1. Calculate the magnitude of the vector on the right-hand side and normalize it. ### Final Result After performing the calculations, we find: \[ \mathbf{c} = \frac{1}{3} \left( \mathbf{i} - 2 \mathbf{j} + 2 \mathbf{k} \right) \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|65 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Unit vectors veca, vecb, vecc are coplanar. A unit vector vecd is perpendicular to them.If (vecaxxvecb)xx(veccxxvecd)=1/6hati-1/3hatj+1/3hatjk and the angle between veca and vecb is 30^(@) , then vecc is/are

veca ,vecb and vecc are unimdular and coplanar. A unit vector vecd is perpendicualt to them , (veca xx vecb) xx (vecc xx vecd) = 1/6 hati - 1/3 hatj + 1/3 hatk , and the angle between veca and vecb is 30^(@) then vecc is

vec a , vec b ,a n d vec c are unimodular and coplanar. A unit vector vec d is perpendicular to then. If ( vec axx vec b)xx( vec cxx vec d)=1/6 hat i-1/3 hat j+1/3 hat k , and the angel between vec aa n d vec b is 30^0,t h e n vec c is a. ( hat i-2 hat j+2 hat k)//3 b. (- hat i+2 hat j-2 hat k)//3 c. (2 hat i+2 hat j- hat k)//3 d. (-2 hat i-2 hat j+ hat k)//3

veca, vecb and vecc are coplanar unit vectors. A unit vector vecd is perpendicular to them. If (vecaxxvecb)xx(vecc xx vecb)=(3)/(26)hati-(2)/(13)hatj+(6)/(13)hatk and the angle between veca and vecb is 30^(@) , then vecc is equal to

A unit vector c perpendicular to a=i-j and coplanar with a and b=i+k is

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS
  1. Let vec u , vec v and vec w be vector such vec u+ vec v+ vec w= ...

    Text Solution

    |

  2. If a and b are two non-parallel vectors having equal magnitude, then t...

    Text Solution

    |

  3. Let a, b,c be distinct non-negative numbers. If the vectors ai + aj + ...

    Text Solution

    |

  4. Let x, y and z be unit vectors such that abs(x-y)^(2)+abs(y-z)^(2)+a...

    Text Solution

    |

  5. If a, b and c are three unit vectors satisfying 2a times(a timesb)+c=0...

    Text Solution

    |

  6. If b=i-j+3k, c=j+2k" and "a is a unit vector, then the maximum value o...

    Text Solution

    |

  7. If a, b and c are non-zero vectors such that a times b=c, b times c=a ...

    Text Solution

    |

  8. Let vec O A= vec a , vec O B=10 vec a+2 vec b ,a n d vec O C=bw h e r...

    Text Solution

    |

  9. If a and b are two vectors such that 2a+b=e(1)" and "a+2b=e(2), where ...

    Text Solution

    |

  10. If u, v, w are unit vectors satisfying 2u+2v+2w=0," then "abs(u-v) equ...

    Text Solution

    |

  11. Let barV = 2i + j - k and barW = i + 3k If barU is a unit vector, th...

    Text Solution

    |

  12. Unit vectors a, b, c are coplanar. A unit vector d is perpendicular to...

    Text Solution

    |

  13. Let x=2i+j-2k" and "y=i+j. If z is a vector such that x.z=abs(z), abs(...

    Text Solution

    |

  14. From a point A with position vector p(i+j+k), AB and AC are drawn perp...

    Text Solution

    |

  15. Three vector a, b and c are such that abs(a)=1, abs(b)=2, abs(c)=4" an...

    Text Solution

    |

  16. If a, b and c are non-collinear unit vectors also b, c are non-colline...

    Text Solution

    |

  17. bar a=2 bar i+bar j-2bar k and bar b=bar i+bar j if bar c is a vecto...

    Text Solution

    |

  18. Let an angle between a and b be 2pi//3. If abs(b)=2abs(a) and the vect...

    Text Solution

    |

  19. If three vectors V(1)=alphai+j+k, V(2)=i+betaj-2k" and "V(3)=i+j are c...

    Text Solution

    |

  20. Let OA=a=1/2(i+j-2k), OC=b=i-2j+k" and "OB=10a+2b. Let p (in ("unit")^...

    Text Solution

    |