Home
Class 12
MATHS
Let x=2i+j-2k" and "y=i+j. If z is a vec...

Let `x=2i+j-2k" and "y=i+j`. If z is a vector such that `x.z=abs(z), abs(z-x)=2sqrt(2)` and the angle between `x times y` and z is `30^(@)`, then the magnitude of the vector `(x timesy) timesz` is:

A

`sqrt(3)/2`

B

`3/2`

C

`1/2`

D

`(3sqrt(3))/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we will follow these steps: ### Step 1: Define the vectors Given: - \( \mathbf{x} = 2\mathbf{i} + \mathbf{j} - 2\mathbf{k} \) - \( \mathbf{y} = \mathbf{i} + \mathbf{j} \) ### Step 2: Calculate the cross product \( \mathbf{x} \times \mathbf{y} \) We can calculate the cross product using the determinant of a matrix formed by the unit vectors and the components of \( \mathbf{x} \) and \( \mathbf{y} \): \[ \mathbf{x} \times \mathbf{y} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & -2 \\ 1 & 1 & 0 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} 1 & -2 \\ 1 & 0 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 2 & -2 \\ 1 & 0 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} \] Calculating each of these determinants: 1. \( \begin{vmatrix} 1 & -2 \\ 1 & 0 \end{vmatrix} = (1)(0) - (1)(-2) = 2 \) 2. \( \begin{vmatrix} 2 & -2 \\ 1 & 0 \end{vmatrix} = (2)(0) - (1)(-2) = 2 \) 3. \( \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} = (2)(1) - (1)(1) = 1 \) Thus, \[ \mathbf{x} \times \mathbf{y} = 2\mathbf{i} - 2\mathbf{j} + 1\mathbf{k} \] ### Step 3: Calculate the magnitude of \( \mathbf{x} \times \mathbf{y} \) The magnitude is given by: \[ |\mathbf{x} \times \mathbf{y}| = \sqrt{(2)^2 + (-2)^2 + (1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3 \] ### Step 4: Use the given conditions to find \( |\mathbf{z}| \) We have two conditions: 1. \( \mathbf{x} \cdot \mathbf{z} = |\mathbf{z}| \) 2. \( |\mathbf{z} - \mathbf{x}| = 2\sqrt{2} \) From the second condition, we can express it as: \[ |\mathbf{z} - \mathbf{x}|^2 = (2\sqrt{2})^2 = 8 \] Expanding this using the dot product: \[ |\mathbf{z}|^2 - 2\mathbf{z} \cdot \mathbf{x} + |\mathbf{x}|^2 = 8 \] Let \( |\mathbf{z}| = r \). Then, substituting \( \mathbf{x} \cdot \mathbf{z} = r \): \[ r^2 - 2r + |\mathbf{x}|^2 = 8 \] Now, calculate \( |\mathbf{x}| \): \[ |\mathbf{x}| = \sqrt{(2)^2 + (1)^2 + (-2)^2} = \sqrt{4 + 1 + 4} = \sqrt{9} = 3 \] Substituting back: \[ r^2 - 2r + 9 = 8 \implies r^2 - 2r + 1 = 0 \implies (r - 1)^2 = 0 \implies r = 1 \] Thus, \( |\mathbf{z}| = 1 \). ### Step 5: Calculate the magnitude of \( (\mathbf{x} \times \mathbf{y}) \times \mathbf{z} \) Using the formula for the magnitude of the cross product: \[ |(\mathbf{x} \times \mathbf{y}) \times \mathbf{z}| = |\mathbf{x} \times \mathbf{y}| \cdot |\mathbf{z}| \cdot \sin(\theta) \] Where \( \theta = 30^\circ \) and \( \sin(30^\circ) = \frac{1}{2} \): \[ |(\mathbf{x} \times \mathbf{y}) \times \mathbf{z}| = 3 \cdot 1 \cdot \frac{1}{2} = \frac{3}{2} \] ### Final Answer The magnitude of the vector \( (\mathbf{x} \times \mathbf{y}) \times \mathbf{z} \) is \( \frac{3}{2} \). ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|65 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If x=3i-6j-k, y=i+4j-3k" and "z=3i-4j-12k , then the magnitude of the projection of x times y on z is

Let x, y and z be unit vectors such that abs(x-y)^(2)+abs(y-z)^(2)+abs(z-x)^(2)=9 Then abs(x+y-z)^(2)-4x.y=

Let x,y,z be the vector, such that |x|=|y|=|z| =sqrt(2) and x,y,z make angles of 60^(@) with each other also. The value of y is:

Find the angle between the planes 2x + y - 2z = 5 and 3x - 6y - 2z = 7 . Using vector method.

Let x, y, z be the vector, such that |x|=|y|=|z|=sqrt(2) and x, y, z make angles of 60^(@) with each other also, xtimes(ytimesz)=a and ytimes(ztimesx)=b xtimesy=c, . The value of z is

Given that abs(z+i)=abs(z-i)=abs(z-1) and z=x+iy find number of pairs (x,y)

The angle between (hat i+hat j+hat k) and line of the intersection of the plane 2x+y+4z=0 and 3x+4y+z=0 is

Find the angle between the lines x-2y+z=0=x+2y-2z and x+2y+z=0=3x+9y+5z

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS
  1. Let vec u , vec v and vec w be vector such vec u+ vec v+ vec w= ...

    Text Solution

    |

  2. If a and b are two non-parallel vectors having equal magnitude, then t...

    Text Solution

    |

  3. Let a, b,c be distinct non-negative numbers. If the vectors ai + aj + ...

    Text Solution

    |

  4. Let x, y and z be unit vectors such that abs(x-y)^(2)+abs(y-z)^(2)+a...

    Text Solution

    |

  5. If a, b and c are three unit vectors satisfying 2a times(a timesb)+c=0...

    Text Solution

    |

  6. If b=i-j+3k, c=j+2k" and "a is a unit vector, then the maximum value o...

    Text Solution

    |

  7. If a, b and c are non-zero vectors such that a times b=c, b times c=a ...

    Text Solution

    |

  8. Let vec O A= vec a , vec O B=10 vec a+2 vec b ,a n d vec O C=bw h e r...

    Text Solution

    |

  9. If a and b are two vectors such that 2a+b=e(1)" and "a+2b=e(2), where ...

    Text Solution

    |

  10. If u, v, w are unit vectors satisfying 2u+2v+2w=0," then "abs(u-v) equ...

    Text Solution

    |

  11. Let barV = 2i + j - k and barW = i + 3k If barU is a unit vector, th...

    Text Solution

    |

  12. Unit vectors a, b, c are coplanar. A unit vector d is perpendicular to...

    Text Solution

    |

  13. Let x=2i+j-2k" and "y=i+j. If z is a vector such that x.z=abs(z), abs(...

    Text Solution

    |

  14. From a point A with position vector p(i+j+k), AB and AC are drawn perp...

    Text Solution

    |

  15. Three vector a, b and c are such that abs(a)=1, abs(b)=2, abs(c)=4" an...

    Text Solution

    |

  16. If a, b and c are non-collinear unit vectors also b, c are non-colline...

    Text Solution

    |

  17. bar a=2 bar i+bar j-2bar k and bar b=bar i+bar j if bar c is a vecto...

    Text Solution

    |

  18. Let an angle between a and b be 2pi//3. If abs(b)=2abs(a) and the vect...

    Text Solution

    |

  19. If three vectors V(1)=alphai+j+k, V(2)=i+betaj-2k" and "V(3)=i+j are c...

    Text Solution

    |

  20. Let OA=a=1/2(i+j-2k), OC=b=i-2j+k" and "OB=10a+2b. Let p (in ("unit")^...

    Text Solution

    |