Home
Class 12
MATHS
Three vector a, b and c are such that ab...

Three vector a, b and c are such that `abs(a)=1, abs(b)=2, abs(c)=4" and "a+b+c=0`. Then the value of `4a.b+3b.c+3c.a` is equal to

A

27

B

-68

C

-26

D

-34

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( 4\mathbf{a} \cdot \mathbf{b} + 3\mathbf{b} \cdot \mathbf{c} + 3\mathbf{c} \cdot \mathbf{a} \) given the conditions \( |\mathbf{a}| = 1 \), \( |\mathbf{b}| = 2 \), \( |\mathbf{c}| = 4 \), and \( \mathbf{a} + \mathbf{b} + \mathbf{c} = 0 \). ### Step-by-Step Solution: 1. **Use the condition \( \mathbf{a} + \mathbf{b} + \mathbf{c} = 0 \)**: \[ \mathbf{c} = -(\mathbf{a} + \mathbf{b}) \] 2. **Dot product with \( \mathbf{a} \)**: \[ \mathbf{a} \cdot \mathbf{c} = \mathbf{a} \cdot (-\mathbf{a} - \mathbf{b}) = -\mathbf{a} \cdot \mathbf{a} - \mathbf{a} \cdot \mathbf{b} \] Since \( |\mathbf{a}|^2 = 1 \): \[ \mathbf{a} \cdot \mathbf{c} = -1 - \mathbf{a} \cdot \mathbf{b} \] 3. **Dot product with \( \mathbf{b} \)**: \[ \mathbf{b} \cdot \mathbf{c} = \mathbf{b} \cdot (-\mathbf{a} - \mathbf{b}) = -\mathbf{b} \cdot \mathbf{a} - \mathbf{b} \cdot \mathbf{b} \] Since \( |\mathbf{b}|^2 = 4 \): \[ \mathbf{b} \cdot \mathbf{c} = -\mathbf{b} \cdot \mathbf{a} - 4 \] 4. **Dot product with \( \mathbf{c} \)**: \[ \mathbf{c} \cdot \mathbf{c} = |\mathbf{c}|^2 = 16 \] \[ \mathbf{c} \cdot \mathbf{c} = (-\mathbf{a} - \mathbf{b}) \cdot (-\mathbf{a} - \mathbf{b}) = \mathbf{a} \cdot \mathbf{a} + 2\mathbf{a} \cdot \mathbf{b} + \mathbf{b} \cdot \mathbf{b} \] So, \[ 16 = 1 + 2\mathbf{a} \cdot \mathbf{b} + 4 \] \[ 16 = 5 + 2\mathbf{a} \cdot \mathbf{b} \] \[ 2\mathbf{a} \cdot \mathbf{b} = 11 \implies \mathbf{a} \cdot \mathbf{b} = \frac{11}{2} \] 5. **Substituting back to find \( \mathbf{b} \cdot \mathbf{c} \)**: \[ \mathbf{b} \cdot \mathbf{c} = -\frac{11}{2} - 4 = -\frac{11}{2} - \frac{8}{2} = -\frac{19}{2} \] 6. **Substituting back to find \( \mathbf{a} \cdot \mathbf{c} \)**: \[ \mathbf{a} \cdot \mathbf{c} = -1 - \frac{11}{2} = -\frac{2}{2} - \frac{11}{2} = -\frac{13}{2} \] 7. **Now substitute into \( 4\mathbf{a} \cdot \mathbf{b} + 3\mathbf{b} \cdot \mathbf{c} + 3\mathbf{c} \cdot \mathbf{a} \)**: \[ 4\mathbf{a} \cdot \mathbf{b} = 4 \cdot \frac{11}{2} = 22 \] \[ 3\mathbf{b} \cdot \mathbf{c} = 3 \cdot \left(-\frac{19}{2}\right) = -\frac{57}{2} \] \[ 3\mathbf{c} \cdot \mathbf{a} = 3 \cdot \left(-\frac{13}{2}\right) = -\frac{39}{2} \] 8. **Combine all terms**: \[ 4\mathbf{a} \cdot \mathbf{b} + 3\mathbf{b} \cdot \mathbf{c} + 3\mathbf{c} \cdot \mathbf{a} = 22 - \frac{57}{2} - \frac{39}{2} \] \[ = 22 - \frac{96}{2} = 22 - 48 = -26 \] ### Final Answer: The value of \( 4\mathbf{a} \cdot \mathbf{b} + 3\mathbf{b} \cdot \mathbf{c} + 3\mathbf{c} \cdot \mathbf{a} \) is \( \boxed{-26} \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|65 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If abs(a)=2, abs(b)=3, abs(c)=4" and "a+b+c=0 then the value of b*c+c*a+a*b is equal to

5.If a.b =b .c=c.a=0 then the value of [a,b,c] is

The three vectors a, b and c with magnitude 3, 4 and 5 respectively and a+b+c=0, then the value of a.b+b.c+c.a is

If abs(a)=5, abs(b)=4, abs(c)=3 then the value of (a*b+b*c+c*a) given that a+b+c=0

If a:b: c= 3:4:7, then the ratio (a + b + c): c is equal to

If a + b + c = 1, ab + bc + ca = 2 and abc = 3, then the value of a^4 +b^4 +c^4 is equal to _____

If a+b+c=0" and "abs(a)=3, abs(b)=5" and "abs(c)=7 then the angle between a and b is

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS
  1. Let vec u , vec v and vec w be vector such vec u+ vec v+ vec w= ...

    Text Solution

    |

  2. If a and b are two non-parallel vectors having equal magnitude, then t...

    Text Solution

    |

  3. Let a, b,c be distinct non-negative numbers. If the vectors ai + aj + ...

    Text Solution

    |

  4. Let x, y and z be unit vectors such that abs(x-y)^(2)+abs(y-z)^(2)+a...

    Text Solution

    |

  5. If a, b and c are three unit vectors satisfying 2a times(a timesb)+c=0...

    Text Solution

    |

  6. If b=i-j+3k, c=j+2k" and "a is a unit vector, then the maximum value o...

    Text Solution

    |

  7. If a, b and c are non-zero vectors such that a times b=c, b times c=a ...

    Text Solution

    |

  8. Let vec O A= vec a , vec O B=10 vec a+2 vec b ,a n d vec O C=bw h e r...

    Text Solution

    |

  9. If a and b are two vectors such that 2a+b=e(1)" and "a+2b=e(2), where ...

    Text Solution

    |

  10. If u, v, w are unit vectors satisfying 2u+2v+2w=0," then "abs(u-v) equ...

    Text Solution

    |

  11. Let barV = 2i + j - k and barW = i + 3k If barU is a unit vector, th...

    Text Solution

    |

  12. Unit vectors a, b, c are coplanar. A unit vector d is perpendicular to...

    Text Solution

    |

  13. Let x=2i+j-2k" and "y=i+j. If z is a vector such that x.z=abs(z), abs(...

    Text Solution

    |

  14. From a point A with position vector p(i+j+k), AB and AC are drawn perp...

    Text Solution

    |

  15. Three vector a, b and c are such that abs(a)=1, abs(b)=2, abs(c)=4" an...

    Text Solution

    |

  16. If a, b and c are non-collinear unit vectors also b, c are non-colline...

    Text Solution

    |

  17. bar a=2 bar i+bar j-2bar k and bar b=bar i+bar j if bar c is a vecto...

    Text Solution

    |

  18. Let an angle between a and b be 2pi//3. If abs(b)=2abs(a) and the vect...

    Text Solution

    |

  19. If three vectors V(1)=alphai+j+k, V(2)=i+betaj-2k" and "V(3)=i+j are c...

    Text Solution

    |

  20. Let OA=a=1/2(i+j-2k), OC=b=i-2j+k" and "OB=10a+2b. Let p (in ("unit")^...

    Text Solution

    |