Home
Class 12
MATHS
If three vectors V(1)=alphai+j+k, V(2)=i...

If three vectors `V_(1)=alphai+j+k, V_(2)=i+betaj-2k" and "V_(3)=i+j` are coplanar, and `V_(1)" and "V_(3)` are perpendicular, then the vector `V_(1) times V_(2)` is:

A

`-i+j+2k`

B

`i-j+2k`

C

`-i+j`

D

`2i-2j+k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to follow these steps: ### Step 1: Identify the vectors We are given three vectors: - \( V_1 = \alpha i + j + k \) - \( V_2 = i + \beta j - 2k \) - \( V_3 = i + j \) ### Step 2: Use the coplanarity condition The vectors \( V_1, V_2, V_3 \) are coplanar if their scalar triple product is zero: \[ V_1 \cdot (V_2 \times V_3) = 0 \] This can be expressed as the determinant: \[ \begin{vmatrix} \alpha & 1 & 1 \\ 1 & \beta & -2 \\ 1 & 1 & 0 \end{vmatrix} = 0 \] ### Step 3: Calculate the determinant Calculating the determinant: \[ = \alpha \begin{vmatrix} \beta & -2 \\ 1 & 0 \end{vmatrix} - 1 \begin{vmatrix} 1 & -2 \\ 1 & 0 \end{vmatrix} + 1 \begin{vmatrix} 1 & \beta \\ 1 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} \beta & -2 \\ 1 & 0 \end{vmatrix} = 0 - (-2) = 2 \) 2. \( \begin{vmatrix} 1 & -2 \\ 1 & 0 \end{vmatrix} = 0 - (-2) = 2 \) 3. \( \begin{vmatrix} 1 & \beta \\ 1 & 1 \end{vmatrix} = 1 - \beta \) Putting it all together: \[ \alpha \cdot 2 - 1 \cdot 2 + (1 - \beta) = 0 \] This simplifies to: \[ 2\alpha - 2 + 1 - \beta = 0 \quad \text{(1)} \] ### Step 4: Use the perpendicularity condition Vectors \( V_1 \) and \( V_3 \) are perpendicular, so: \[ V_1 \cdot V_3 = 0 \] Calculating the dot product: \[ (\alpha i + j + k) \cdot (i + j) = \alpha \cdot 1 + 1 \cdot 1 + 0 = \alpha + 1 = 0 \] Thus, we have: \[ \alpha + 1 = 0 \quad \Rightarrow \quad \alpha = -1 \quad \text{(2)} \] ### Step 5: Substitute \(\alpha\) into equation (1) Substituting \(\alpha = -1\) into equation (1): \[ 2(-1) - 2 + 1 - \beta = 0 \] This simplifies to: \[ -2 - 2 + 1 - \beta = 0 \quad \Rightarrow \quad -3 - \beta = 0 \quad \Rightarrow \quad \beta = -3 \] ### Step 6: Write the vectors with found values Now substituting \(\alpha\) and \(\beta\) back into the vectors: - \( V_1 = -i + j + k \) - \( V_2 = i - 3j - 2k \) - \( V_3 = i + j \) ### Step 7: Calculate \( V_1 \times V_2 \) Now we compute the cross product \( V_1 \times V_2 \): \[ \begin{vmatrix} i & j & k \\ -1 & 1 & 1 \\ 1 & -3 & -2 \end{vmatrix} \] Calculating the determinant: \[ = i \begin{vmatrix} 1 & 1 \\ -3 & -2 \end{vmatrix} - j \begin{vmatrix} -1 & 1 \\ 1 & -2 \end{vmatrix} + k \begin{vmatrix} -1 & 1 \\ 1 & -3 \end{vmatrix} \] Calculating each of these 2x2 determinants: 1. \( \begin{vmatrix} 1 & 1 \\ -3 & -2 \end{vmatrix} = (1)(-2) - (1)(-3) = -2 + 3 = 1 \) 2. \( \begin{vmatrix} -1 & 1 \\ 1 & -2 \end{vmatrix} = (-1)(-2) - (1)(1) = 2 - 1 = 1 \) 3. \( \begin{vmatrix} -1 & 1 \\ 1 & -3 \end{vmatrix} = (-1)(-3) - (1)(1) = 3 - 1 = 2 \) Putting it all together: \[ V_1 \times V_2 = i(1) - j(1) + k(2) = i - j + 2k \] ### Final Answer Thus, the vector \( V_1 \times V_2 \) is: \[ \boxed{i - j + 2k} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|65 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Let V_(1)=3ax^(2)i-2(x-1)j and V_(2)=b(x-1)i+x^(2)j where,ab<0. The vector V_(1) and V_(2) are linearly dependent for

If the three vectors V_(1)=i-aj-ak,V_(2)=bi-j+bk,V_(3)=ci+cj-k are linearly dependent then find the value of (1+a)^(-1)+(1+b)^(-1)+(1+c)^(-1)

A unit vector coplanar with i+j+2k and i+2j+k and perpendicular to i+j+k is

If vec(v)_(1)+vec(v)_(2) is perpendicular to vec(v)_(1)-vec(v)_(2) , then

Three capacitors C_(1),C_(2) and C_(3) are connected as shown in, The potentials of P,Q , and R are V_(1),V_(2), and V_(3) , respectively. Find the potential V_(0) at the function O . .

Two batteries V_(1) and V_(2) are connected to three resistors as shown below. If V_(1) = 2V and V_(2) = 0 V, the current I = 3 mA. If V_(1) = 0 V and V_(2) = 4V, the current I = 4mA. Now, if V_(1) = 10 V and V_(2) = 10 V, the current I will be-

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS
  1. Let vec u , vec v and vec w be vector such vec u+ vec v+ vec w= ...

    Text Solution

    |

  2. If a and b are two non-parallel vectors having equal magnitude, then t...

    Text Solution

    |

  3. Let a, b,c be distinct non-negative numbers. If the vectors ai + aj + ...

    Text Solution

    |

  4. Let x, y and z be unit vectors such that abs(x-y)^(2)+abs(y-z)^(2)+a...

    Text Solution

    |

  5. If a, b and c are three unit vectors satisfying 2a times(a timesb)+c=0...

    Text Solution

    |

  6. If b=i-j+3k, c=j+2k" and "a is a unit vector, then the maximum value o...

    Text Solution

    |

  7. If a, b and c are non-zero vectors such that a times b=c, b times c=a ...

    Text Solution

    |

  8. Let vec O A= vec a , vec O B=10 vec a+2 vec b ,a n d vec O C=bw h e r...

    Text Solution

    |

  9. If a and b are two vectors such that 2a+b=e(1)" and "a+2b=e(2), where ...

    Text Solution

    |

  10. If u, v, w are unit vectors satisfying 2u+2v+2w=0," then "abs(u-v) equ...

    Text Solution

    |

  11. Let barV = 2i + j - k and barW = i + 3k If barU is a unit vector, th...

    Text Solution

    |

  12. Unit vectors a, b, c are coplanar. A unit vector d is perpendicular to...

    Text Solution

    |

  13. Let x=2i+j-2k" and "y=i+j. If z is a vector such that x.z=abs(z), abs(...

    Text Solution

    |

  14. From a point A with position vector p(i+j+k), AB and AC are drawn perp...

    Text Solution

    |

  15. Three vector a, b and c are such that abs(a)=1, abs(b)=2, abs(c)=4" an...

    Text Solution

    |

  16. If a, b and c are non-collinear unit vectors also b, c are non-colline...

    Text Solution

    |

  17. bar a=2 bar i+bar j-2bar k and bar b=bar i+bar j if bar c is a vecto...

    Text Solution

    |

  18. Let an angle between a and b be 2pi//3. If abs(b)=2abs(a) and the vect...

    Text Solution

    |

  19. If three vectors V(1)=alphai+j+k, V(2)=i+betaj-2k" and "V(3)=i+j are c...

    Text Solution

    |

  20. Let OA=a=1/2(i+j-2k), OC=b=i-2j+k" and "OB=10a+2b. Let p (in ("unit")^...

    Text Solution

    |