Home
Class 12
MATHS
Let OA=a=1/2(i+j-2k), OC=b=i-2j+k" and "...

Let `OA=a=1/2(i+j-2k), OC=b=i-2j+k" and "OB=10a+2b`. Let p (in `("unit")^(2)`) be the area of the quadrilateral OABC and q (in `("unit")^(2)`) be the area of the parallelogram with OA and OC as adjacent sides, then p/q is equal to

A

3

B

4

C

6

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the areas \( p \) and \( q \) as described in the question and then compute the ratio \( \frac{p}{q} \). ### Step 1: Define the vectors Given: - \( OA = a = \frac{1}{2}(i + j - 2k) \) - \( OC = b = i - 2j + k \) - \( OB = 10a + 2b \) ### Step 2: Calculate \( OB \) First, we need to calculate \( OB \): \[ OB = 10a + 2b = 10\left(\frac{1}{2}(i + j - 2k)\right) + 2(i - 2j + k) \] Calculating \( 10a \): \[ 10a = 5(i + j - 2k) = 5i + 5j - 10k \] Calculating \( 2b \): \[ 2b = 2(i - 2j + k) = 2i - 4j + 2k \] Now, adding these two results: \[ OB = (5i + 5j - 10k) + (2i - 4j + 2k) = (5 + 2)i + (5 - 4)j + (-10 + 2)k = 7i + 1j - 8k \] ### Step 3: Calculate \( AB \) and \( BC \) Next, we find \( AB \) and \( BC \): \[ AB = OB - OA = (7i + j - 8k) - \left(\frac{1}{2}(i + j - 2k)\right) \] Calculating \( AB \): \[ AB = (7 - \frac{1}{2})i + (1 - \frac{1}{2})j + (-8 + 1)k = \frac{13}{2}i + \frac{1}{2}j - 7k \] For \( BC \): \[ BC = OC - OB = (i - 2j + k) - (7i + j - 8k) \] Calculating \( BC \): \[ BC = (1 - 7)i + (-2 - 1)j + (1 + 8)k = -6i - 3j + 9k \] ### Step 4: Calculate the area \( p \) of quadrilateral \( OABC \) The area \( p \) can be calculated as: \[ p = \frac{1}{2} | OA \times AB | + \frac{1}{2} | OC \times BC | \] Calculating \( OA \times AB \): \[ OA = \frac{1}{2}(i + j - 2k), \quad AB = \frac{13}{2}i + \frac{1}{2}j - 7k \] Using the determinant method for the cross product: \[ OA \times AB = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{1}{2} & \frac{1}{2} & -1 \\ \frac{13}{2} & \frac{1}{2} & -7 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}\left(\frac{1}{2}(-7) - (-1)(\frac{1}{2})\right) - \hat{j}\left(\frac{1}{2}(-7) - (-1)(\frac{13}{2})\right) + \hat{k}\left(\frac{1}{2}(\frac{1}{2}) - \frac{1}{2}(\frac{13}{2})\right) \] \[ = \hat{i}\left(-\frac{7}{2} + \frac{1}{2}\right) - \hat{j}\left(-\frac{7}{2} + \frac{13}{2}\right) + \hat{k}\left(\frac{1}{4} - \frac{13}{4}\right) \] \[ = \hat{i}\left(-3\right) - \hat{j}\left(3\right) + \hat{k}\left(-3\right) = -3i - 3j - 3k \] Thus, \( |OA \times AB| = 3\sqrt{3} \). Calculating \( OC \times BC \): \[ OC = i - 2j + k, \quad BC = -6i - 3j + 9k \] Using the same determinant method: \[ OC \times BC = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -2 & 1 \\ -6 & -3 & 9 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}((-2)(9) - (1)(-3)) - \hat{j}((1)(9) - (1)(-6)) + \hat{k}((1)(-3) - (-2)(-6)) \] \[ = \hat{i}(-18 + 3) - \hat{j}(9 + 6) + \hat{k}(-3 - 12) \] \[ = -15\hat{i} - 15\hat{j} - 15\hat{k} \] Thus, \( |OC \times BC| = 15\sqrt{3} \). Now we can find \( p \): \[ p = \frac{1}{2} \cdot 3\sqrt{3} + \frac{1}{2} \cdot 15\sqrt{3} = \frac{18\sqrt{3}}{2} = 9\sqrt{3} \] ### Step 5: Calculate the area \( q \) of the parallelogram The area \( q \) is given by: \[ q = |OA \times OC| \] Calculating \( OA \times OC \): \[ = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ \frac{1}{2} & \frac{1}{2} & -1 \\ 1 & -2 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \hat{i}\left(\frac{1}{2}(1) - (-1)(-2)\right) - \hat{j}\left(\frac{1}{2}(1) - (-1)(1)\right) + \hat{k}\left(\frac{1}{2}(-2) - \frac{1}{2}(1)\right) \] \[ = \hat{i}\left(\frac{1}{2} - 2\right) - \hat{j}\left(\frac{1}{2} + 1\right) + \hat{k}\left(-1 - \frac{1}{2}\right) \] \[ = -\frac{3}{2}\hat{i} - \frac{3}{2}\hat{j} - \frac{3}{2}\hat{k} \] Thus, \( |OA \times OC| = \frac{3\sqrt{3}}{2} \). ### Step 6: Calculate the ratio \( \frac{p}{q} \) Now we can find the ratio: \[ \frac{p}{q} = \frac{9\sqrt{3}}{\frac{3\sqrt{3}}{2}} = 9 \cdot \frac{2}{3} = 6 \] ### Final Answer Thus, the ratio \( \frac{p}{q} \) is \( 6 \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|65 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

vec OA=vec a,vec OB=10vec a+2vec b, and vec OC=b where O is origin.Let p denote the area of th quadrilateral OABC and q denote the area of teh parallelogram with OA and OC as adjacent sides.Prove that p=6q.

Let vec(OA)=vecas, vec(OB)=10veca+2vecb and vec(OC)=vecb where O A and C are non collinear points. Let p denote the area of the quadrilaterial OABCand q denote the area of the parallelogram with OA and OC as adjacent sides. Then p/q= (A) 2 (B) 6 (C) 1 (D) 1/2|veca+vecb+vecc]

Let overset(to)(OA) = overset(to)(a), overset(to)(OB)= 10overset(to)(a) + 2overset(b) " and " overset(to)(OC)=overset(to)(b) where O,A and C are non-collinear points . Let P denotes the area of the quadrilateral OABC and let q denots the area of the parallelogram with OA and OC as adjacent sides. If p =kq , then h=........

vec OA-vec a,widehat OB=10vec a+2vec b and vec OC=vec b, where O,A and C are non-collinear points.Let p denotes the areaof quadrilateral OACB, and let q denote the area of parallelogram with OA and OC as adjacent sides.If p=kq, then find k.

Find the area of a parallelogram whose adjacent sides are the vectors a=2i-2j+k" and "b=i-3j+3k .

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS
  1. Let vec u , vec v and vec w be vector such vec u+ vec v+ vec w= ...

    Text Solution

    |

  2. If a and b are two non-parallel vectors having equal magnitude, then t...

    Text Solution

    |

  3. Let a, b,c be distinct non-negative numbers. If the vectors ai + aj + ...

    Text Solution

    |

  4. Let x, y and z be unit vectors such that abs(x-y)^(2)+abs(y-z)^(2)+a...

    Text Solution

    |

  5. If a, b and c are three unit vectors satisfying 2a times(a timesb)+c=0...

    Text Solution

    |

  6. If b=i-j+3k, c=j+2k" and "a is a unit vector, then the maximum value o...

    Text Solution

    |

  7. If a, b and c are non-zero vectors such that a times b=c, b times c=a ...

    Text Solution

    |

  8. Let vec O A= vec a , vec O B=10 vec a+2 vec b ,a n d vec O C=bw h e r...

    Text Solution

    |

  9. If a and b are two vectors such that 2a+b=e(1)" and "a+2b=e(2), where ...

    Text Solution

    |

  10. If u, v, w are unit vectors satisfying 2u+2v+2w=0," then "abs(u-v) equ...

    Text Solution

    |

  11. Let barV = 2i + j - k and barW = i + 3k If barU is a unit vector, th...

    Text Solution

    |

  12. Unit vectors a, b, c are coplanar. A unit vector d is perpendicular to...

    Text Solution

    |

  13. Let x=2i+j-2k" and "y=i+j. If z is a vector such that x.z=abs(z), abs(...

    Text Solution

    |

  14. From a point A with position vector p(i+j+k), AB and AC are drawn perp...

    Text Solution

    |

  15. Three vector a, b and c are such that abs(a)=1, abs(b)=2, abs(c)=4" an...

    Text Solution

    |

  16. If a, b and c are non-collinear unit vectors also b, c are non-colline...

    Text Solution

    |

  17. bar a=2 bar i+bar j-2bar k and bar b=bar i+bar j if bar c is a vecto...

    Text Solution

    |

  18. Let an angle between a and b be 2pi//3. If abs(b)=2abs(a) and the vect...

    Text Solution

    |

  19. If three vectors V(1)=alphai+j+k, V(2)=i+betaj-2k" and "V(3)=i+j are c...

    Text Solution

    |

  20. Let OA=a=1/2(i+j-2k), OC=b=i-2j+k" and "OB=10a+2b. Let p (in ("unit")^...

    Text Solution

    |