Home
Class 12
MATHS
If a variable takes values 0,1,2,3,........

If a variable takes values `0,1,2,3,`.......... with frequencies proportional to `e^-lambda,e^-lambda lambda,(e^-lambda lambda^2)/(2!),(e^-lambda lambda^3)/(3!),.....` then the mean of the distribution is

A

`e^(-lambda) `

B

` lambda`

C

` e^(-lambda) lambda `

D

`((1)/(2)) e^(-lambda) lambda^(2) `

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (NUMERICAL ANSWER TYPE QUESTIONS)|9 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise QUESTION FROM PREVIOUS YEARS. AIEE/ JEE MAIN PAPERS|45 Videos
  • STATISTICS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL-1 ( SINGLE CORRECT ANSWER TYPE QUESTIONS))|17 Videos
  • SETS, RELATIONS AND FUNCTIONS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEAR.S B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|19 Videos
  • THE DIMENSIONAL GEOMETRY

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|25 Videos

Similar Questions

Explore conceptually related problems

lambda ^ (3) -6 lambda ^ (2) -15 lambda-8 = 0

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

the values of lambda for which (lambda^(2)-3 lambda+2)x^(2)+(lambda^(2)-5 lambda+6)+lambda^(2)-4=0 is identity in x is

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C, where A, B and C are matrices then A+B=

The vertices of a triangle ABC are (lambda,2-2 lambda)(-lambda+1,2 lambda) and (-4-lambda,6-2 lambda). If its area be 70 units then number of integral values of lambda is

If the equation (lambda^(2)-5 lambda+6)x^(2)+(lambda^(2)-3 lambda+2)x+(lambda^(2)-4)=0 is satisfied by more then two values of x then lambda=

Show that the area of the triangle with vertices (lambda, lambda-2), (lambda+3, lambda) and (lambda+2, lambda+2) is independent of lambda .

The point (lambda+1,1),(2 lambda+1,3) and (2 lambda+2,2 lambda) are collinear,then the value of lambda can be

if points (2lambda, 2lambda+2) , (3, 2lambda + 1) And (1,lambda + 1) are linear, then lambda find the value of

If [(lambda^(2)-2lambda+1,lambda-2),(1-lambda^(2)+3lambda,1-lambda^(2))]=Alambda^(2)+Blambda+C , where A, B and C are matrices then find matrices B and C.