Home
Class 12
MATHS
If x = e^(t) sin t and y = e^(t) cos t, ...

If `x = e^(t) sin t and y = e^(t)` cos t, t is a parameter , then the value of `(d^(2) x)/( dy^(2)) + (d^(2) y)/(dx^(2))` at t = 0 , is :

A

`-2`

B

`1//2`

C

2

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To solve the given problem, we need to find the value of \(\frac{d^2 x}{dy^2} + \frac{d^2 y}{dx^2}\) at \(t = 0\), where \(x = e^t \sin t\) and \(y = e^t \cos t\). ### Step 1: Find the first derivatives \( \frac{dx}{dt} \) and \( \frac{dy}{dt} \) 1. Differentiate \(x\) with respect to \(t\): \[ \frac{dx}{dt} = \frac{d}{dt}(e^t \sin t) = e^t \sin t + e^t \cos t = e^t (\sin t + \cos t) \] 2. Differentiate \(y\) with respect to \(t\): \[ \frac{dy}{dt} = \frac{d}{dt}(e^t \cos t) = e^t \cos t - e^t \sin t = e^t (\cos t - \sin t) \] ### Step 2: Find the second derivatives \( \frac{d^2x}{dt^2} \) and \( \frac{d^2y}{dt^2} \) 1. Differentiate \(\frac{dx}{dt}\) with respect to \(t\): \[ \frac{d^2x}{dt^2} = \frac{d}{dt}(e^t (\sin t + \cos t)) = e^t (\sin t + \cos t) + e^t (\cos t - \sin t) = 2e^t \cos t \] 2. Differentiate \(\frac{dy}{dt}\) with respect to \(t\): \[ \frac{d^2y}{dt^2} = \frac{d}{dt}(e^t (\cos t - \sin t)) = e^t (\cos t - \sin t) - e^t (\sin t + \cos t) = -2e^t \sin t \] ### Step 3: Find \(\frac{dy}{dx}\) Using the chain rule: \[ \frac{dy}{dx} = \frac{\frac{dy}{dt}}{\frac{dx}{dt}} = \frac{e^t (\cos t - \sin t)}{e^t (\sin t + \cos t)} = \frac{\cos t - \sin t}{\sin t + \cos t} \] ### Step 4: Find \(\frac{d^2y}{dx^2}\) Using the formula: \[ \frac{d^2y}{dx^2} = \frac{d}{dx}\left(\frac{dy}{dx}\right) = \frac{d}{dt}\left(\frac{dy}{dx}\right) \cdot \frac{dt}{dx} \] Where: \[ \frac{dt}{dx} = \frac{1}{\frac{dx}{dt}} = \frac{1}{e^t (\sin t + \cos t)} \] Now, differentiate \(\frac{dy}{dx}\) with respect to \(t\): \[ \frac{d}{dt}\left(\frac{dy}{dx}\right) = \frac{(\sin t + \cos t)(-\sin t - \cos t) - (\cos t - \sin t)(\cos t - \sin t)}{(\sin t + \cos t)^2} \] ### Step 5: Evaluate at \(t = 0\) At \(t = 0\): - \(x(0) = e^0 \sin(0) = 0\) - \(y(0) = e^0 \cos(0) = 1\) - \(\frac{dx}{dt}(0) = 1\) - \(\frac{dy}{dt}(0) = 0\) - \(\frac{d^2x}{dt^2}(0) = 2\) - \(\frac{d^2y}{dt^2}(0) = 0\) Now we can calculate: \[ \frac{d^2y}{dx^2} = \frac{0}{1} = 0 \] \[ \frac{d^2x}{dy^2} = \frac{2}{1} = 2 \] Finally, we find: \[ \frac{d^2x}{dy^2} + \frac{d^2y}{dx^2} = 2 + 0 = 2 \] ### Final Answer: The value of \(\frac{d^2 x}{dy^2} + \frac{d^2 y}{dx^2}\) at \(t = 0\) is \(2\).
Promotional Banner

Topper's Solved these Questions

  • JEE ( MAIN) 2020 QUESTIONS (9TH JAN-MORNING)

    MCGROW HILL PUBLICATION|Exercise JEE (Main) 2020 Questions with Solution Mathematics (9th Jan - Morning)|25 Videos
  • JEE (MAIN) 2020 QUESTION PAPER MATHEMATICS (8TH JAN - MORNING)

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos

Similar Questions

Explore conceptually related problems

If x=e^t sin t , y=e^t cos t , t is a parameter , then (d^2y)/(dx^2) at (1,1) is equal to

A curve is represented paramtrically by the equations x=e^(t)cost and y=e^(t)sint where t is a parameter. Then The value of (d^(2)y)/(dx^(2)) at the point where t=0 is

If x=cos t+(log tan t)/(2),y=sin t, then find the value of (d^(2)y)/(dt^(2)) and (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=cos t+t sin t and y=sin t-t cos t ,then the value of (d^(2)x)/(dy^(2)) is (where 't' is parameter

If x=t+(1)/(t) and y=t-(1)/(t) , where t is a parameter,then a value of (dy)/(dx)

If x=a(sin t-t cos t),y=a sin t then find the value of (d^(2)y)/(dx^(2))

If x = 2 cos t - cos 2t , y = 2 sin t - sin 2t , then the value of |(d^(2) y)/(dx^(2))|_(t= pi//2 ) is

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

If x=a(cos t+t sin t) and y=a(sin t-t cos t), then find the value of (d^(2)y)/(dx^(2)) at t=(pi)/(4)

MCGROW HILL PUBLICATION-JEE ( MAIN) 2020 QUESTIONS WITH SOLUTIONS B.ARCH (6TH JAN -MORING)-Question
  1. If f(x) = |(sin x,cos x,tan x),(x^(3),x^(2),x),(2x,1,1)|, " then " und...

    Text Solution

    |

  2. For non-zero numbers, l, m, n and a, let f(x) = lx^(3) + mx + n and ...

    Text Solution

    |

  3. Let C be the circle concentric with the circle , 2x^(2) + 2y^(2) - 6x ...

    Text Solution

    |

  4. Let S = 3 + 55 + 333 + 5555 + 33333+ upto 22 terms. If 9s + 88 = A(10...

    Text Solution

    |

  5. If x = e^(t) sin t and y = e^(t) cos t, t is a parameter , then the ...

    Text Solution

    |

  6. If a ellipse has centre at (0,0), a focus at (-3,0) and the correspond...

    Text Solution

    |

  7. If the roots alpha and beta of the equation , x^(2) - sqrt(2) x + c =...

    Text Solution

    |

  8. If the probability of a shooter A not hitting a target is 0.5 and that...

    Text Solution

    |

  9. If theta is the between the line r = ( i + 2j- k) + lambda (i - j + 2k...

    Text Solution

    |

  10. The area of the figure formed by the lines ax + by +c = 0, ax - by + c...

    Text Solution

    |

  11. Find the Value of cot pi/24

    Text Solution

    |

  12. Let P be the point of intersection of two lines L(1) : (x + 10)/(1)...

    Text Solution

    |

  13. The area (in sq. units) of the region, R = {(x,y): y le x^(2), y le 2x...

    Text Solution

    |

  14. If alpha and beta are the coefficients of x^(8) and x^(-24) respective...

    Text Solution

    |

  15. Let A be a 2 xx2 matrix such that 3A^(2) + 6A - l(2)= O(2) . Then a va...

    Text Solution

    |

  16. IF y = y (x) is the solution of the differential equation, x (dy)/(dx)...

    Text Solution

    |

  17. IF S = {z in C : bar(z) = iz^(2)}, then the maximum value of |z - sqrt...

    Text Solution

    |

  18. lim(y to 0) ((y - 2) + 2sqrt(1 + y + y^(2)))/(2y) is equal to

    Text Solution

    |

  19. Interior angle of polygon are in A.P.If the smallest angle is 120^@ a...

    Text Solution

    |

  20. The largest value of n in N for which (74)/(""^(n)P(n)) gt (""^(n + 3)...

    Text Solution

    |