Home
Class 12
MATHS
If theta is the between the line r = ( i...

If `theta` is the between the line `r = ( i + 2j- k) + lambda (i - j + 2k) , lambda in R` and the plane r. (2i - j + k ) = 4. then a value of cos `theta` is :

A

`(sqrt(11))/(6)`

B

`(sqrt(35))/(6)`

C

`(sqrt(13))/(6)`

D

`(sqrt(7))/(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos \theta \) where \( \theta \) is the angle between the line and the plane, we can follow these steps: ### Step 1: Identify the direction ratios of the line and the normal vector of the plane. The line is given by: \[ \mathbf{r} = (1\mathbf{i} + 2\mathbf{j} - 1\mathbf{k}) + \lambda(1\mathbf{i} - 1\mathbf{j} + 2\mathbf{k}) \] From this, we can identify the direction vector \( \mathbf{b} \) of the line: \[ \mathbf{b} = (1\mathbf{i} - 1\mathbf{j} + 2\mathbf{k}) = \mathbf{i} - \mathbf{j} + 2\mathbf{k} \] The equation of the plane is given by: \[ \mathbf{r} \cdot (2\mathbf{i} - \mathbf{j} + \mathbf{k}) = 4 \] From this, we can identify the normal vector \( \mathbf{n} \) of the plane: \[ \mathbf{n} = (2\mathbf{i} - \mathbf{j} + \mathbf{k}) \] ### Step 2: Calculate the dot product \( \mathbf{b} \cdot \mathbf{n} \). Now, we calculate the dot product of \( \mathbf{b} \) and \( \mathbf{n} \): \[ \mathbf{b} \cdot \mathbf{n} = (1)(2) + (-1)(-1) + (2)(1) = 2 + 1 + 2 = 5 \] ### Step 3: Calculate the magnitudes of \( \mathbf{b} \) and \( \mathbf{n} \). Next, we find the magnitudes of \( \mathbf{b} \) and \( \mathbf{n} \): \[ |\mathbf{b}| = \sqrt{(1)^2 + (-1)^2 + (2)^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] \[ |\mathbf{n}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] ### Step 4: Use the sine formula to find \( \sin \theta \). The sine of the angle \( \theta \) between the line and the plane can be calculated using the formula: \[ \sin \theta = \frac{|\mathbf{b} \cdot \mathbf{n}|}{|\mathbf{b}| |\mathbf{n}|} \] Substituting the values we found: \[ \sin \theta = \frac{5}{\sqrt{6} \cdot \sqrt{6}} = \frac{5}{6} \] ### Step 5: Find \( \cos \theta \). Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \): \[ \cos^2 \theta = 1 - \sin^2 \theta = 1 - \left(\frac{5}{6}\right)^2 = 1 - \frac{25}{36} = \frac{36 - 25}{36} = \frac{11}{36} \] Thus, \[ \cos \theta = \sqrt{\frac{11}{36}} = \frac{\sqrt{11}}{6} \] ### Final Answer: The value of \( \cos \theta \) is: \[ \cos \theta = \frac{\sqrt{11}}{6} \]
Promotional Banner

Topper's Solved these Questions

  • JEE ( MAIN) 2020 QUESTIONS (9TH JAN-MORNING)

    MCGROW HILL PUBLICATION|Exercise JEE (Main) 2020 Questions with Solution Mathematics (9th Jan - Morning)|25 Videos
  • JEE (MAIN) 2020 QUESTION PAPER MATHEMATICS (8TH JAN - MORNING)

    MCGROW HILL PUBLICATION|Exercise QUESTIONS|25 Videos

Similar Questions

Explore conceptually related problems

The distance between the line vec r=2i-2j+3k+lambda(i-j+4k) and the plane vec r*(i+5j+k)=5 is

Find the angle between the lines vec r*(hat i+2hat j-hat k)+lambda(hat i-hat j+hat k) and the plane vec r*(2hat i-hat j+hat k)=4

Find the angle between the line vec r=hat i+2hat j-hat k+lambda(hat i-hat j+hat k) and the plane vec r*(2hat i-hat j+hat k)=4

Find the angle between the line: vec(r) = (hat(i) - hat(j) + hat(k) ) + lambda (2 hat(i) - hat(j) + 3 hat(k)) and the plane vec(r). (2 hat(i) + hat(j) - hat(k) ) = 4. Also, find the whether the line is parallel to the plane or not.

Find the angle between the line vec r=(vec i+2vec j-vec k)+lambda(vec i-vec j+vec k) and the normal to the plane vec r(2vec i-vec j+vec k)=4

Find the angle between the line vec r=(2hat i-hat j+3hat k)+lambda(3hat i-hat j+2hat k) and the plane vec r*(hat i+hat j+hat k)=3

The angle between the line r=(hat(i)+2hat(j)-hat(k))+lamda(hat(i)-hat(j)+hat(k)) and the plane r*(2hat(i)-hat(j)+hat(k))=4 is

MCGROW HILL PUBLICATION-JEE ( MAIN) 2020 QUESTIONS WITH SOLUTIONS B.ARCH (6TH JAN -MORING)-Question
  1. If f(x) = |(sin x,cos x,tan x),(x^(3),x^(2),x),(2x,1,1)|, " then " und...

    Text Solution

    |

  2. For non-zero numbers, l, m, n and a, let f(x) = lx^(3) + mx + n and ...

    Text Solution

    |

  3. Let C be the circle concentric with the circle , 2x^(2) + 2y^(2) - 6x ...

    Text Solution

    |

  4. Let S = 3 + 55 + 333 + 5555 + 33333+ upto 22 terms. If 9s + 88 = A(10...

    Text Solution

    |

  5. If x = e^(t) sin t and y = e^(t) cos t, t is a parameter , then the ...

    Text Solution

    |

  6. If a ellipse has centre at (0,0), a focus at (-3,0) and the correspond...

    Text Solution

    |

  7. If the roots alpha and beta of the equation , x^(2) - sqrt(2) x + c =...

    Text Solution

    |

  8. If the probability of a shooter A not hitting a target is 0.5 and that...

    Text Solution

    |

  9. If theta is the between the line r = ( i + 2j- k) + lambda (i - j + 2k...

    Text Solution

    |

  10. The area of the figure formed by the lines ax + by +c = 0, ax - by + c...

    Text Solution

    |

  11. Find the Value of cot pi/24

    Text Solution

    |

  12. Let P be the point of intersection of two lines L(1) : (x + 10)/(1)...

    Text Solution

    |

  13. The area (in sq. units) of the region, R = {(x,y): y le x^(2), y le 2x...

    Text Solution

    |

  14. If alpha and beta are the coefficients of x^(8) and x^(-24) respective...

    Text Solution

    |

  15. Let A be a 2 xx2 matrix such that 3A^(2) + 6A - l(2)= O(2) . Then a va...

    Text Solution

    |

  16. IF y = y (x) is the solution of the differential equation, x (dy)/(dx)...

    Text Solution

    |

  17. IF S = {z in C : bar(z) = iz^(2)}, then the maximum value of |z - sqrt...

    Text Solution

    |

  18. lim(y to 0) ((y - 2) + 2sqrt(1 + y + y^(2)))/(2y) is equal to

    Text Solution

    |

  19. Interior angle of polygon are in A.P.If the smallest angle is 120^@ a...

    Text Solution

    |

  20. The largest value of n in N for which (74)/(""^(n)P(n)) gt (""^(n + 3)...

    Text Solution

    |