Home
Class 12
MATHS
Let a = i- 2j + k and b = i-j+k be two v...

Let a = i- 2j + k and b = i-j+k be two vectors. If c is a vector such that b x c = b x a and c.a = 0, then c . b is equal to:

A

`1//2`

B

`-3//2`

C

`-1//2`

D

`-1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( c \cdot b \) given the vectors \( a = \mathbf{i} - 2\mathbf{j} + \mathbf{k} \) and \( b = \mathbf{i} - \mathbf{j} + \mathbf{k} \) under the conditions that \( \mathbf{b} \times \mathbf{c} = \mathbf{b} \times \mathbf{a} \) and \( \mathbf{c} \cdot \mathbf{a} = 0 \). ### Step-by-Step Solution: 1. **Define the vector \( c \)**: Let \( \mathbf{c} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \). 2. **Use the condition \( \mathbf{c} \cdot \mathbf{a} = 0 \)**: \[ \mathbf{c} \cdot \mathbf{a} = (x \mathbf{i} + y \mathbf{j} + z \mathbf{k}) \cdot (\mathbf{i} - 2\mathbf{j} + \mathbf{k}) = x - 2y + z = 0 \] This gives us our first equation: \[ x - 2y + z = 0 \quad \text{(1)} \] 3. **Calculate \( \mathbf{b} \times \mathbf{c} \)**: The cross product \( \mathbf{b} \times \mathbf{c} \) can be computed using the determinant: \[ \mathbf{b} = \mathbf{i} - \mathbf{j} + \mathbf{k} \quad \text{and} \quad \mathbf{c} = x \mathbf{i} + y \mathbf{j} + z \mathbf{k} \] \[ \mathbf{b} \times \mathbf{c} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 1 \\ x & y & z \end{vmatrix} \] Expanding this determinant: \[ = \mathbf{i}((-1)z - 1y) - \mathbf{j}(1z - 1x) + \mathbf{k}(1y - (-1)x) \] \[ = \mathbf{i}(-z - y) - \mathbf{j}(z - x) + \mathbf{k}(y + x) \] 4. **Calculate \( \mathbf{b} \times \mathbf{a} \)**: \[ \mathbf{a} = \mathbf{i} - 2\mathbf{j} + \mathbf{k} \] \[ \mathbf{b} \times \mathbf{a} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & 1 \\ 1 & -2 & 1 \end{vmatrix} \] Expanding this determinant: \[ = \mathbf{i}((-1)(1) - 1(-2)) - \mathbf{j}(1(1) - 1(1)) + \mathbf{k}(1(-2) - (-1)(1)) \] \[ = \mathbf{i}(-1 + 2) - \mathbf{j}(1 - 1) + \mathbf{k}(-2 + 1) \] \[ = \mathbf{i}(1) + 0\mathbf{j} - \mathbf{k}(1) = \mathbf{i} - \mathbf{k} \] 5. **Set the two cross products equal**: \[ \mathbf{b} \times \mathbf{c} = \mathbf{b} \times \mathbf{a} \] This gives us: \[ -z - y = 1 \quad \text{(2)} \] \[ z - x = 0 \quad \text{(3)} \] \[ y + x = -1 \quad \text{(4)} \] 6. **Solve the equations**: From equation (3), we have \( z = x \). Substitute \( z \) in equation (2): \[ -x - y = 1 \implies y = -x - 1 \] Substitute \( y \) in equation (4): \[ (-x - 1) + x = -1 \implies -1 = -1 \quad \text{(True)} \] Now substitute \( y \) back into equation (1): \[ x - 2(-x - 1) + x = 0 \implies x + 2x + 2 = 0 \implies 4x + 2 = 0 \implies x = -\frac{1}{2} \] Then, \( z = -\frac{1}{2} \) and \( y = -(-\frac{1}{2}) - 1 = -\frac{1}{2} \). 7. **Find \( c \)**: \[ \mathbf{c} = -\frac{1}{2} \mathbf{i} - \frac{1}{2} \mathbf{j} - \frac{1}{2} \mathbf{k} \] 8. **Calculate \( c \cdot b \)**: \[ \mathbf{c} \cdot \mathbf{b} = \left(-\frac{1}{2} \mathbf{i} - \frac{1}{2} \mathbf{j} - \frac{1}{2} \mathbf{k}\right) \cdot \left(\mathbf{i} - \mathbf{j} + \mathbf{k}\right) \] \[ = -\frac{1}{2}(1) - \frac{1}{2}(-1) - \frac{1}{2}(1) = -\frac{1}{2} + \frac{1}{2} - \frac{1}{2} = -\frac{1}{2} \] ### Final Answer: \[ c \cdot b = -\frac{1}{2} \]
Promotional Banner

Topper's Solved these Questions

  • JEE (MAIN) 2020 QUESTION PAPER (7TH JAN - AFTERNOON)

    MCGROW HILL PUBLICATION|Exercise Multiple Choice Question|25 Videos
  • JEE (MAIN) 2020 QUESTIONS ( 9TH JAN-AFTERNOON)

    MCGROW HILL PUBLICATION|Exercise JEE (Main) 2020 Questions with Solutions Mathematics (9th Jan - Afternoon)|25 Videos

Similar Questions

Explore conceptually related problems

Let a=i-2j+k" and "b=i-j+lambdak , (where lambda in Z ) be two vectors. If c is a vector such that a times b=c timesb, c*a=0" and "2b*c+1=0," then "lambda= ________

If vec a=i+j+k and vec b=j-k then find vector c, such that a xx c=b and a*c=3

Let a= hat(i) - hat(j) , b=hat(i) + hat(j) + hat(k) and c be a vector such that axx c + b=0 " and " a. c =4, then |c|^(2) is equal to

If vec a = i + j + k & vec b = i-2j + k, then the vector vec c such that vec a * vec c = 2 & vec a xxvec c = vec b is

MCGROW HILL PUBLICATION-JEE (Main) 2020 QUESTION PAPER (8TH JAN-AFTERNOON)-Multiple Choice Questions
  1. Let S be the set of all real roots of the equation,3^(x)(3^(x)-1)+2=|3...

    Text Solution

    |

  2. The mean and variance of 20 observations are found to be 10 and 4 resp...

    Text Solution

    |

  3. Let a = i- 2j + k and b = i-j+k be two vectors. If c is a vector such ...

    Text Solution

    |

  4. Let f:(1,3) to R be a function defined by f(x)=(x[x])/(1+x) , where [...

    Text Solution

    |

  5. If alpha and beta be the coefficients of x^4 and x^2 respectively in t...

    Text Solution

    |

  6. If a hyperbola passes through the point P(10,16) and it has vertices a...

    Text Solution

    |

  7. lim(x rarr 0)(int0^x tsin(10t)dt)/x is equal to

    Text Solution

    |

  8. If y = mx + c is a tangent to the circle (x – 3)^2 + y^2 = 1 and also ...

    Text Solution

    |

  9. Let alpha=(-1+isqrt(3))/2 and a=(1+alpha)sum(k=0)^(100) alpha^(2k),b=s...

    Text Solution

    |

  10. The mirror image of the point (1,2,3) in plane is (-7/3,-4/3, -1/3) . ...

    Text Solution

    |

  11. The length of the perpendicular from the origin,on the normal to the c...

    Text Solution

    |

  12. Which of the following statements is a tautology?

    Text Solution

    |

  13. Let I=int1^2 (dx)/sqrt(2x^3-9x^2+12x+4) then

    Text Solution

    |

  14. If A=((2,2),(9,4)) and I=((1,0),(0,1)), then 10A^(-1) is equal to :

    Text Solution

    |

  15. The area (in sq. units) of the region {(x,y) in R^2: x^2 le y le 3-2x}...

    Text Solution

    |

  16. Let the set of all function f: [0,1]toR, which are containous on [0,1]...

    Text Solution

    |

  17. The differential equation of the family of curves, x^(2)=4b(y+b),b in ...

    Text Solution

    |

  18. The system of linear equations lambdax+2y+2z=5 2lambda x+3y+5z=8 ...

    Text Solution

    |

  19. It the 10^(th) term of an A. P. is 1/20 and its 20^(th) term is 1/10, ...

    Text Solution

    |

  20. Let a line y = mx ( m gt 0) intersect the parabola, y^2 = 4x at a po...

    Text Solution

    |