Home
Class 11
MATHS
If a^(x)=bc,b^(y)=ca,c^(z)=ab where a,b,...

If `a^(x)=bc,b^(y)=ca,c^(z)=ab` where `a,b,c>0,` then `(x)/(1+x)+(y)/(1+y)+(z)/(1+z)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x-1)=bc,b^(y-1)=ca,c^(z-1)=ab, then sum((1)/(x))=

If x=log_(a)bc,y=log_(b)ca,z=log_(c)ab, then the value of (1)/(1+x)+(1)/(1+y)+(1)/(1+z) will be

If x = log_(a) bc, y = log_(b) ca, z = log_(c) ab, then the value of (1)/(1 + x) + (1)/(1 + y) + (1)/(l + z) will be

if a,b,c are in G.P. and a^(x)=b^(y)=c^(z) prove that (1)/(x)+(1)/(z)=(2)/(y)

if =log_(a)(bc),y=log_(b)(ca) and z=log_(c)(ab) then (1)/(x+1)+(1)/(y+1)+(1)/(z+1)

If (a+b)/(x)=(b+c)/(y)=(c+a)/(z), then (A) (a+b+c)/(x+y+z)=(ab+bc+ca)/(ay+bz+cx)(B)(c)/(y+z-x)=(a)/(x+z-y)=(b)/(x+y-z)(C)(c)/(x)=(a)/(y)=(b)/(z)(D)(a+b)/(b+c)=(a+b+x)/(b+c+y)

If x=log_(a)(bc),y=log_(b)(ca),z=log_(c)(ab) then (1)/(x+1)+(1)/(y+1)+(1)/(z+1) is equal to