Home
Class 12
MATHS
" The value of "(log(2)24)/(log(96)2)-(l...

" The value of "(log_(2)24)/(log_(96)2)-(log_(2)192)/(log_(12)2)" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: (log_(2)24)/(log_(96)2)-(log_(2)192)/(log_(12)2)=3

Prove that (log_(2)(24))/(log_(96)2)-(log_(2)(192))/(log_(12)2)=3

The value of (log_(8)17)/(log_(9)23)-(log_(2sqrt(2))17)/(log_(3)23) is equal to

Find the value of (log_(3)12)(log_(3)72)-log_(3)(192)*log_(36)

The value of log_(8)17/(log_(9)23)-log_(2sqrt2)17/(log_(3)23) is equal to

find the value of log_(2)log_(2)log_(2)16=

log_(3)2,log_(6)2,log_(12)2 are in

The value of log_(2)log_(2)log_(4)256+2log_(sqrt(2))2 is :

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is