Home
Class 12
MATHS
" If "a^(x)=b^(*)=c^(k)=d^(*)" ,then "lo...

" If "a^(x)=b^(*)=c^(k)=d^(*)" ,then "log_(p)(" thed ")=

Promotional Banner

Similar Questions

Explore conceptually related problems

If a^(x)=b^(y)=c^(z)=d^(w) then log_(a)(bcd)=

If x,y,z are in G.P.and a^(x)=b^(y)=c^(z), then (a) log ba=log_(a)c(b)log_(c)b=log_(a)c(c)log_(b)a=log_(c)b(d) none of these

If x,y,z are in G.P.nad a^(x)=b^(y)=c^(z), then log_(b)a=log_(a)c b.log_(c)b=log_(a)c c.log_(b)a=log_(c)b d.none of these

If a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), , then find K_(1) K_(2) K_(3) .

If a^(x) = b , b^(y) = c, c^(z) = a, x = log_(b) a^(k_(1)) , y = log_(c)b^(k_(2)), z = log _(a) c^(k_(3)), , then find K_(1) K_(2) K_(3) .

Given log_(a) x=alpha, log _(b) x=beta, log_(c)x =gamma & log_(d) x=delta(x ne 1), a,b,c,d in R^(+)-{1}" then "log_(abcd)x then the value equal to:

If x=(log)_k b=(log)_b c=1/2(log)_c d , then (log)_k d is equal to 6x (b) (x^3)/2 (c) 2x^3 (d) 2x^8

If x=(log)_k b=(log)_b c=1/2(log)_c d , then (log)_k d is equal to (a) 6x (b) (x^3)/2 (c) 2x^3 (d) 2x^8

If x ,y ,z are in G.P. and a^x=b^y=c^z , then (log)_b a=(log)_a c b. (log)_c b=(log)_a c c. (log)_b a=(log)_c b d. none of these