Home
Class 12
MATHS
Let n in N, f(n)={(log(8)n" if "log(8)n ...

Let `n in N, f(n)={(log_(8)n" if "log_(8)n " is integer"),(0" otherwise"):}`, then the valud of `sum_(n=1)^(2011) f(n)` is :

Promotional Banner

Similar Questions

Explore conceptually related problems

If 2 log_(8) N = p , log_(2) 2 N = q , and q - p = 4 , then the value of N is

sum_(n=1)^(n)(1)/(log_(2)(a))

Let f(n) = [(1)/(2) + (n)/(100)] where [n] denotes the integral part of n. Then the value of sum_(n=1)^(100) f(n) is

If n=1999! then sum_(x=1)^(1999)log_(n)x=

Let f(n)=[1/2+n/100] , where [.] denotes the greatest integer function,then the value of sum_(n=1)^151 f(n)

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

sum_(n=1)^(1023)log_(2)(1+(1)/(n)) is equal to

If 2log_(8)N = p, log_(2)N = q and q - p = 4 then the value of N is

sum_(n=0)^(oo) ((log_ex)^n)/(n!)