Home
Class 12
MATHS
" The number of negative integral values...

" The number of negative integral values of "x" satisfying the inequality log "_((x)),((x-5)/(2x-3))^(2)<0" is: "

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of negative integral values of x satisfying the inequality log_((x+(5)/(2)))((x-5)/(2x-3))^(2)lt 0 is :

The number of negative integral values of x satisfying the inequality log_((x+(5)/(2)))((x-5)/(2x-3))^(2)lt 0 is :

Sum of integral values of x satisfying the inequality 3((5)/(2))log_(3)(12-3x)

Find the number of integral values of x satisfying the inequality, x^2-5x-6<0 .

" The number of integral values of "'x'" satisfying the inequality "(1)/((x^(2)+x))<=(1)/((2x^(2)+2x+3))" is/are "

Nurmber of non negative integral values of x satisfying the inequality (2)/(x^(2)-x+1)-(1)/(x-1)-(2x-1)/(x^(3)+1)>=0 is

Find the number of positive integral value of x satisfying the inequality ((3^(x)-5^(x))(x-2))/((x^(2)+5x+2))ge0

Find the number of positive integral value of x satisfying the inequality ((3^(x)-5^(x))(x-2))/((x^(2)+5x+2))ge0

The number of integral values of x satisfying |x^2-1|leq3 is

If x=(4)/(9) then number of distinct integral values of x satisfying the inequality log_(a)(x^(2)-x+2)>log_(a)(-x^(2)+2x+3) ,is