Home
Class 12
MATHS
The number of elements in the range of f...

The number of elements in the range of functions: `y=sin^(-1) [x^(2)+5/9]+cos^(-1) [x^(2)-4/9]` where where [.] denotes the greatest integer function is:

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of elements in the range of the function : y =sin ^(-1) [x ^(2) + (5)/(9)] + cos ^(-1) [x ^(2) -(4)/(9)] where [.] denotes the greatest integer function is

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

The range of the function f(x) = sin^(-1)[x^2+1/2]+cos^(-1)[x^2-1/2] , where [ . ] denotes the greatest integer function.

The range of sin^(-1)[x^(2)+1/2] + cos^(-1)[x^(2)- 1/2] , where [.] denotes the greatest integer function, is

The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] is (where, [.] denotes the greatest integer function)

The range of the function y=2sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] is (where, [.] denotes the greatest integer function)

f(x)=sin^(-1)[x^(2)+(1)/(2)]+cos^(-1)[x^(2)-(1)/(2)] where [.1 denotes the greatest integer function.

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

f(x)=sin^(-1)[log_(2)((x^(2))/(2))] where [.] denotes the greatest integer function.