Home
Class 11
MATHS
[" The minimum value of "c'" such that "...

[" The minimum value of "c'" such that "log_(x)(x^(k+b))=log_(a)(b^(ln t^(+)))" and "log_(a)(c-(b-a)^(2))=3" ."],[" where "a,b in N" is: "]

Promotional Banner

Similar Questions

Explore conceptually related problems

The minimum value of 'c' such that log_(b)(a^(log_(2)b))=log_(a)(b^(log_(2)b)) and log_(a) (c-(b-a)^(2))=3 , where a, b in N is :

The minimum value of 'c' such that log_(b)(a^(log_(2)b))=log_(a)(b^(log_(2)b)) and log_(a) (c-(b-a)^(2))=3 , where a, b in N is :

Find the value of log_(b)^(x)*log_(c)^(b)*log_(d)^(c)dots...log_(n)^(m)*log_(a)^(n)

Find the value of log((a^n)/(b^n)) + log((b^n)/(c^n)) + log((c^n)/(a^n))

log_(b^(n))^(a^(m))=K*log_(b)^(a) where K is

If log_(a)b=1/2,log_(b)c=1/3" and "log_(c)a=(K)/(5) , then the value of K is

(1+log_(c)a)log_(a)x*log_(b)c=log_(b)x log_(a)x

The value of log_(b)a+log_(b^(2))a^(2) + log_(b^(3))a^(3) + ... + log_(b^(n))a^(n)

log_(a)b=2,log_(b)c=2 and log_(3)c=3+log_(3)a then (a+b+c)=?

Prove that: log_(a)x=log_(b)x xx log_(c)b xx...xx log_(n)m xx log_(a)n