Home
Class 11
MATHS
[(6)/(5)a^((kz,x)(log(2)-alpha(b(k)))-3^...

[(6)/(5)a^((kz,x)(log_(2)-alpha(b_(k)))-3^(log_(n)((x)/(10)))=9^(log_(k)x+lo_(4)^(2))(" where "a>0,a!=1)," then "log_(1)x=alpha+beta,a" is integer,"],[beta in[0,1)" then "alpha=]

Promotional Banner

Similar Questions

Explore conceptually related problems

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2) (where a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

if log_(a)x=(1)/(alpha),log_(b)x=(1)/(beta),log_(c)x=y then log_(abc)x

If (6)/(5)a^(A)-3^(B)=9^(C) where A=log_(a)x*log_(10)a log_(a)5,B=log_(10)((x)/(10)) and C=log_(100)x+log_(4)2. Find x

Let log_(3)N=alpha_(1)+beta_(1) log_(5)N=alpha_(2)+beta_(2) log_(7)N=alpha_(3)+beta_(3) where alpha_(1), alpha_(2) and alpha_(3) are integers and beta_(1), beta_(2), beta_(3) in [0,1) . Q. Largest integral value of N if alpha_(1)=5, alpha_(2)=3 and alpha_(3)=2 .

Let log_(3)N=alpha_(1)+beta_(1) log_(5)N=alpha_(2)+beta_(2) log_(7)N=alpha_(3)+beta_(3) where alpha_(1), alpha_(2) and alpha_(3) are integers and beta_(1), beta_(2), beta_(3) in [0,1) . Q. Difference of largest and smallest values of N if alpha_(1)=5, alpha_(2)=3 and alpha_(3)=2 .

Let log_(3)N=alpha_(1)+beta_(1) log_(5)N=alpha_(2)+beta_(2) log_(7)N=alpha_(3)+beta_(3) where alpha_(1), alpha_(2) and alpha_(3) are integers and beta_(1), beta_(2), beta_(3) in [0,1) . Q. Difference of largest and smallest values of N if alpha_(1)=5, alpha_(2)=3 and alpha_(3)=2 .

Let log_(3)N=alpha_(1)+beta_(1) log_(5)N=alpha_(2)+beta_(2) log_(7)N=alpha_(3)+beta_(3) where alpha_(1), alpha_(2) and alpha_(3) are integers and beta_(1), beta_(2), beta_(3) in [0,1) . Q. Number of integral values of N if alpha_(1)=4 and alpha_(2)=2 :

F(x)=x^(5)+log,(x+sqrt(1+x^(2))) , Then for all alpha, beta in R such that alpha+beta gt 0