Home
Class 8
MATHS
[(6)/(5)a^((log(a)x)(log(10)a)(log(4)5))...

[(6)/(5)a^((log_(a)x)(log_(10)a)(log_(4)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)^(2))],[" (where "a>0,a!=1" ),then "],[log_(3)x=alpha+beta,alpha" is integer,"],[beta in[0,1)" then "alpha=]

Promotional Banner

Similar Questions

Explore conceptually related problems

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2) (where a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

(6)/(5)a^((log_(a)x)(log_(10)a)(log_(a)5))-3^(log_(10)((x)/(10)))=9^(log_(100)x+log_(4)2)("where "a gt 0, a ne 1) , then log_(3)x=alpha +beta, alpha is integer, beta in [0, 1) , then alpha=

Value of x, satisfying (6)/(5)a^(log_(a)(x))*(log_(10)(a)*log_(a)(5))-3^(log_(10)((x)/(10)))=9^(log_(100)(x)+log_(4)(2)) is :

If (6)/(5)a^(A)-3^(B)=9^(C) where A=log_(a)x*log_(10)a log_(a)5,B=log_(10)((x)/(10)) and C=log_(100)x+log_(4)2. Find x

4^(log_(10)x+1)-6^(log_(10)x)-2*3^(log_(10)x^(2)+2)=0. Find x

If 4^(log_(9)(3))+9^(log_(2)(4))=10^(log_(x)(83)) then x=

Solve for x:x+(log)_(10)(1+2^(x))=x log_(10)5+log_(10)6