Home
Class 11
MATHS
[lim(x rarr2)((cos alpha)^(x)+sin alpha^...

[lim_(x rarr2)((cos alpha)^(x)+sin alpha^(x)-1)/(x-2)=],[[" (A) "(cos^(2)alpha)ln cos alpha+(sin^(2)alpha)" (n since "," (B) "1],[" {C) "ln(cos alpha)(sin alpha)," (D) "tn(sin^(2)alpha)=(cos^(2)a+1)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(x rarr2)((cos theta)^(x)(sin theta)^(x)-1)/(x-2) equals

lim_(x rarr oo)sqrt((x+cos alpha)/(x+sin alpha))=

lim_(x rarr0)(1-cos x)/(sin x)

lim_(x rarr0)(x^(2)+2cos x-2)/(x sin^(3)x)

Prove that lim_(x rarr4)((cos alpha)^(x)-(sin alpha)^(x)-cos2 alpha)/(x-4)=cos^(4)alpha ln(cos alpha)-sin^(4)alpha,alpha in(0,(pi)/(2))

Obtain Lim_(xrarr2) ((Cos alpha)^(x)+(Sin alpha)^(x)-1)/(x-2) , where (0 lt alphalt pi/2)

lim_(x rarr oo)(sin alpha-alpha sin x)/(x-alpha)

lim_(x rarr00)(sin alpha x)/(sin beta x)=(alpha)/(beta)

lim_(x rarr0)(sin alpha x)/(tan beta x)