Home
Class 12
MATHS
" find "(dy)/(dx)," if "y=tan^(-1)((sqrt...

" find "(dy)/(dx)," if "y=tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2))))," where "-1

Promotional Banner

Similar Questions

Explore conceptually related problems

y=tan^(-1)((sqrt(1+x^(2))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))), where -1

y=(tan^(-1)(sqrt(1+x^(2))+sqrt(1-x^(2))))/(sqrt(1+x^(2))-sqrt(1-x^(2))) then (dy)/(dx)

If y = tan^(-1) ((sqrt(1+x^(2)) -sqrt(1-x^(2)))/(sqrt(1+x^(2)) + sqrt(1-x^(2)))) then dy/dx =

If y=tan^(-1)(((sqrt(1+x^(2))-sqrt(1-x^(2)))/((sqrt(1+x^(2))+sqrt(1-x^(2)))) find (dy)/(dx)

(d)/(dx) {Tan ^(-1)"" (sqrt(1+ x ^(2))+ sqrt(1- x ^(2)))/( sqrt(1+ x ^(2))- sqrt(1- x ^(2)))}=

If y=Tan^""(-1)((sqrt((1+x^(2)))+sqrt(1-x^(2)))/(sqrt(1+x^(2))-sqrt(1-x^(2)))) then find dy/dx .

y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy/dx

y= tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))) , where -1 < x < 1 , find dy/dx