Home
Class 12
MATHS
" The value of "int(pi/6)^( pi/2)((1+sin...

" The value of "int_(pi/6)^( pi/2)((1+sin2x+cos2x)/(sin x+cos x))dx" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of the integral int_((pi)/(6))^((pi)/(2))((1+sin2x+cos2x)/(sinx+cosx))dx is equal to-

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

int_(0)^(pi//2) ""(sin x - cos x)/( 1-sin x * cos x) dx is equal to

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

int_(-pi//2)^(pi//2) sin^(2)x cos^(2) x(sin xcos x)dx=

int_(0)^(pi//2)(sin x - cos x)/(1-sin x cos x)dx=

int_(0)^( pi/2)(sin x-cos x)/(1+sin x*cos x)*dx

int_(-pi//2)^(pi//2)(sin^(2)x.cos^(2)x(sin x+cos x))dx=