Home
Class 12
MATHS
यदि r^(2) = x^(2) + y^(2) + z^(2) " तथा ...

यदि `r^(2) = x^(2) + y^(2) + z^(2) " तथा " tan^(-1) . (yz)/(xr) + tan^(-1) . (xz)/(yr) = pi/2 - tan^(-1) phi` तो -

Promotional Banner

Similar Questions

Explore conceptually related problems

tan ^(-1) ""(1)/(x)+tan ^(-1) ""2=(pi)/(2)

If r^2 =x^2 +y^2+z^2, "Prove that" "tan"^(-1) (yz)/(xr) ="tan"^(-1) (zx)/(yr) +"tan"^(-1) (xy)/(zr) =pi/2

If r^2 = x^2 + y^2 + z^2 , then prove that tan^(-1)((yz)/(rx))+tan^(-1)((zx)/(ry))+tan^(-1)((xy)/(rz))=pi/2

If x^(2)+y^(2)+z^(2)=r^(2) , then Tan^(-1)((xy)/(zr))+Tan^(-1)((yz)/(xr))+Tan^(-1)((xz)/(yr))=

If tan^(-1) [(yz)/(xr)] + tan^(-1) [(zx)/(yr)]+ tan^(-1) [(xy)/(zr)] = pi /2 prove that, x^2 + y^2 + z^2 = r^2 .

If x, y, z are all non zero and x^(2)+y^(2)+z^(2)=r^(2) then tan ^(-1)((y z)/(x r))+tan ^(-1)((z x)/(y r))+tan ^(-1)((x y)/(z r))