Home
Class 12
MATHS
(1)/(px+q)...

(1)/(px+q)

Promotional Banner

Similar Questions

Explore conceptually related problems

If x nearly equal to 1 show that (px^q - qx^p)/(x^q - x^p) = (1)/(1 -x) ( nearly)

If x nearly equal to 1 show that (px^q - qx^p)/(x^q - x^p) = (1)/(1 -x) ( nearly)

Simplify : (px - q)(px + q)

If the 5th term of ((q)/(px)-px)^(8) is 1120 and p+q=5,p>q>0, then p=

If int (1)/( e^(x) + 1) dx= px- q log |1+e^(x) | + C then p+q=….........

If alpha,beta are the roots of the equation x^(2)+px+q=0, then -(1)/(alpha),-(1)/(beta) are the roots of the equation x^(2)-px+q=0 (b) x^(2)+px+q=0( c) qx^(2)+px+1=0 (d) q^(2)-px+1=0

If alpha and beta are the zeros of the polynomial f(x)=x^(2)+px+q, then a polynomial having (1)/(alpha) and (1)/(beta) is its zeros is (a) x^(2)+qx+p( b) x^(2)-px+q(c)qx^(2)+px+1 (d) px^(2)+qx+1

If x nearly equal to 1 show that (px^p - qx^q)/(p-q) = x^(p+q) (nearly)