Home
Class 12
MATHS
Express in terms of : "tan"^(-1)(2x)/(1-...

Express in terms of : `"tan"^(-1)(2x)/(1-x^(2)` to `tan^(-1)x` for `xgt1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) in terms of tan^(-1)x

Define: tan^(-1)((3x-x^(3))/(1-3x^(2))) in terms of tan^(-1)x

Solve for x : "tan"^(-1)(1-x)/(1+x)=1/(2)"tan"^(-1)x,xgt0 .

tan^(-1)""(1-x)/(1+x)=(1)/(2)tan^(-1)x,(xgt0)

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

If tan^(-1)((1-x)/(1+x))=1/2tan^(-1)x,xgt0 find x

Solve the following equations : "tan"^(-1)(1-x)/(1+x)=1/2tan^(-1)x,(xgt0)

Solve the following equations : "tan"^(-1)(1-x)/(1+x)=1/2tan^(-1)x,(xgt0)