Home
Class 12
MATHS
y = (ax + b) e^(-2x)...

`y = (ax + b) e^(-2x)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Form the differential equations of the following families of curves by elimnating the parameters (arbitrary constants) given against them in the brackets. (i) y = c(x-c)^(2), (c) (ii) xy = a e^(x) + b e^(-x), (a, b) (iii) y = (a+bx)e^(Kx), (a,b) (iv) y = a cos (nx + b), (a,b) (v) = y = a e^(3x) + be^(4x), (a,b) (vi) y = ax^(2) + bx, (a,b) (vii) ax^(2) + by^(2) = 1 (a,b)

If (a^(2) + b^(2)) (x^(2) + y^(2)) = (ax + by)^(2) , prove that : (a)/(x) = (b)/(y) .

The solution of the differential equation (dy)/(dx) = (3e^(2x) + 3e^(4x) )/( e^(x) + e^(-x) ) is a) y= e^(3x) + C b) y=2e^(2x) + C c) y= e^(x) + C d) y= e^(4x) + C

If 4x ^(2) + 12 xy - 8x + 9 y ^(2) - 12 y = (ax + by) (ax+ by -4), then the value of a ^(2) +b ^(2) is

If 4x^(2) + 12xy -8x+9y^(2) -12y = (ax+by) (ax+by-4) , then the value of a^(2) +b^(2) is

{:(x + y = a + b),(ax - by = a^(2) - b^(2)):}

If A={(x,y):y=e^(x),x in R} and B={(x,y):y=e^(-2x),x in R}, then

If y = ax ^(2) + b// x then x ^(2) y _(2) =