Home
Class 11
MATHS
Show that for all real theta the express...

Show that for all real `theta` the expression `asin^2theta+bsinthetacostheta+c cos^2theta` lies between `1/2(a+c)-1/2sqrt(b^2+(a-c)^2` and `1/2(a+c)+1/2sqrt(b^2+(a-c)^2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that for all real theta , the expression a sin^(2)theta + b sin theta cos theta +c cos^(2)theta lies between 1/2(a+c) - 1/2 sqrt(b^(2) +(a-c)^(2)) and 1/2(a+c) + 1/2 sqrt(b^(2) +(a-c)^(2))

Show that for all real theta the expression a sin^(2)theta+b sin theta cos theta+c cos^(2)theta lies between (1)/(2)(a+c)-(1)/(2)sqrt(b^(2)+(a-c)^(2)) and (1)/(2)(a+c)+(1)/(2)sqrt(b^(2)+(a-c)^(2))

If asin^2 theta +bcos^2 theta =c .Show that tan^2 theta =(c-b)/(a-c)

If sintheta+sin^2theta=1 , then cos^2theta+cos^4theta =? (a)-1 (b)0 (c)1 (d)2

If a cos theta+b sin theta = c then show that a sin theta- b cos theta= +- sqrt(a^2+b^2-c^2)

If a sin theta+b cos theta=c then prove that a cos theta-b sin theta=sqrt(a^(2)+b^(2)-c^(2))

If acos theta-b sin theta=c , show that asin theta+b cos theta=+-sqrt(a^2+b^2-c^2dot)

If acos theta-b sin theta=c , show that asin theta+b cos theta=+-sqrt(a^2+b^2-c^2dot)

If a cos theta-b sin theta=c, show that a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)-c^(2))

If a cos theta-b sin theta=c, show that a sin theta+b cos theta=+-sqrt(a^(2)+b^(2)+c^(2))