Home
Class 12
MATHS
Prove that the complex number ((3+2i)/(2...

Prove that the complex number `((3+2i)/(2-3i)) + ((3-2i)/(2+ 3i))` is purely real.

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that the complex number ((4+3i)/(3 + 4i)) ((4 -3i)/(3-4i)) is purely real.

Show that the complex number ((4+3i)/(3 + 4i)) ((4 -3i)/(3-4i)) is purely real.

The argument of the complex number ((3+i)/(2-i)+(3-i)/(2+i)) is equal to

The complex number (2+3i)/(3+2i) in a+ib form

The argument of the complex number (2+3i)/((3+i)+(1+2i)^(2)) is equal to

Find the modulus of the complex number (2i)/(3 + 4i)

Find the modulus of the complex number (2 + 3i)/(2 - 3i)

Show that (i)" "{((3+2i))/((2-3i))+((3-2i))/((2+3i))} is purely real, (ii)" "{((sqrt(7)+i sqrt(3)))/((sqrt(7)-i sqrt(3)))+((sqrt(7)- i sqrt(3)))/((sqrt(7) + i sqrt(3)))} is purely real.

Find the modulus of the complex number ((1+i)(2+i))/(3+i)