Home
Class 14
MATHS
[" *16.If "x=log(e)b+log(b)c,y=log(b)c+l...

[" *16.If "x=log_(e)b+log_(b)c,y=log_(b)c+log_(c)a" and "z=log_(i)b+log_(b)a],[" show that "x^(2)+y^(2)+z^(2)-xyz=4]

Promotional Banner

Similar Questions

Explore conceptually related problems

If x = log_(c ) b + log_(b)c , y=log_(a)c + log_(c ) a, z=log_(b)a+log_(a)b , then show that x^(2) + y^(2) + z^(2) - 4 = xyz .

If x = log_(c) b + log_(b) c, y = log_(a) c + log_(c) a, z = log_(b) a + log_(a) b, then x^(2) + y^(2) + z^(2) - 4 =

If x=log_(a)(bc),y=log_(b)(ca) and z=log_(c )(ab) show that x+y+z+2=xyz

If x=log_(k)b=log_(b)c=(1)/(2)log_(c)d, then log_(k)d is equal to

(1+log_(c)a)log_(a)x*log_(b)c=log_(b)x log_(a)x

If x=log_(b)a,y=log_(c)b,z=log_(a)c then xyz=

log_(x rarr n)-log_(a)y=a,log_(a)y-log_(a)z=b,log_(a)z-log_(a)x=c

Show that log_(b)a log_(c)b log_(a)c=1

If ("log"_(e)x)/(b - c) = ("log"_(e) y)/(c - a) = ("log"_(e) z)/(a - b) , show that x^(a)y^(b)z^(c ) = 1