Home
Class 12
MATHS
If x^(y) = e^(x - y) prove that (dy)/(dx...

If `x^(y) = e^(x - y)` prove that `(dy)/(dx) = (log_(e)x)/((1 + log_(e)x)^(2))`.

Promotional Banner

Similar Questions

Explore conceptually related problems

if x^(y)=e^(x-y) then prove that (dy)/(dx)=(log_(e)x)/((1+log_(e)x)^(2))

If x^(y) = a^(x) , prove that (dy)/( dx) = ( x log _(e) a -y)/( x log_(e) x)

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x^(y)=e^(x-y), Prove that (dy)/(dx)=(log x)/((1+log x)^(2))

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

"If "x^(y)=e^(x-y)," prove that "(dy)/(dx)=(log x)/((1+log x)^(2)).

x^(y)=e^(x-y) so,prove that (dy)/(dx)=(log x)/((1+log x)^(2))

If x ^(y) = e ^( x -y) , then show that (dy)/(dx) = (log x )/( (1 + log x ) ^(2))