Home
Class 12
MATHS
Let f "(x)ge 0 ,f'(x) gt 0,f(0) = 3 & f(...

Let `f "(x)ge 0` ,`f'(x) gt 0`,f(0) = 3 & f(x) is defined in [-2, 2]. If f(x) is non-negative, then (A) `int_(-1)^0 f(x)dx gt 6` (B) `int_(-2)^2 f(x) dx gt 12` (C) `int_(-2)^2f(x)dx ge 12` (D) `int_(-1)^1 f(x) dx ge 12`

Promotional Banner

Similar Questions

Explore conceptually related problems

int _(0) ^(2a) f (x) dx = int _(0) ^(a) f (x) dx + int _(0)^(a) f (2a -x ) dx

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

int_0^a[f(x)+f(-x)]dx= (A) 0 (B) 2int_0^a f(x)dx (C) int_-a^a f(x)dx (D) none of these

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

If int_(-1)^(4) f(x) dx=4 and int_(2)^(4) (3-f(x))dx=7 , then int_(-1)^(2) f(x)dx is a)1 b)2 c)3 d)5

If int_(0)^(a)f(2a-x)dx = m and int_(0)^(a)f(x) dx = n , then int_(0)^(2a)f(x)dx is equal to

If f(x)=f(a+x) then show that int_(0)^(2a)f(x)dx=2int_(0)^(a)f(x)dx .

If f(a-x)=f(x) and int_(0)^(a//2)f(x)dx=p , then : int_(0)^(a)f(x)dx=