Home
Class 12
MATHS
I=int0^(2pi) e^(sin^2x+sinx+1)dx then...

`I=int_0^(2pi) e^(sin^2x+sinx+1)dx` then

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^(pi/2) e^(sinx).sin 2x dx =

int_0^(2pi) (sinx+|sinx|) dx =

int_(0)^(pi/2)e^(-x) sinx dx is

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

Suppose I_1=int_0^(pi/2)cos(pisin^2x)dx and I_2=int_0^(pi/2)cos(2pisin^2x)dx and I_3=int_0^(pi/2) cos(pi sinx)dx , then

int_(0)^(pi//2) e^x(sinx+cosx) dx

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int _0^(pi/2) (sin^2x)/(sinx+cosx)dx

int_(0)^(2pi)(1)/(e^(sin x) +1) dx=