Home
Class 12
MATHS
lim(n->oo) 3/n[1+sqrt(n/(n+3)) + sqrt(n/...

`lim_(n->oo) 3/n[1+sqrt(n/(n+3)) + sqrt(n/(n+6)) + sqrt(n/(n+9)) +......+sqrt(n/(n+3(n-1)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(ntooo)1/n[1+sqrt(n/(n+1))+sqrt(n/(n+2))+sqrt(n/(n+3))+………..+sqrt(n/(n+3(n-1)))]=

lim_(ntooo)1/n[1+sqrt(n/(n+1))+sqrt(n/(n+2))+sqrt(n/(n+3))+………..+sqrt(n/(n+3(n-1)))]=

lim_(ntooo)(3)/(n){1+sqrt((n)/(n+3))+sqrt((n)/(n+6))+sqrt((n)/(n+9))+.........+sqrt((n)/(n+3(n-1)))}

{:(" "Lt),(n rarr oo):} 3/n [1 + sqrt((n)/(n+3))+sqrt((n)/(n+6))+sqrt((n)/(n+9))+....+sqrt((n)/(4n-3))]=

lim_(n->oo) ((sqrt(n^2+n)-1)/n)^(2sqrt(n^2+n)-1)

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n to oo)[(sqrt(n+1)+sqrt(n+2)+....+sqrt(2n))/(n sqrt((n)))]

lim_(n rarr oo) sqrt(n)/sqrt(n+1)=

lim_(n to oo) (sqrt(1) + sqrt(2) + …… + sqrt(n))/(n^(3//2)) equals :