Home
Class 12
MATHS
IF the normals to the parabola y^2=4ax ...

IF the normals to the parabola `y^2=4ax` at three points P,Q and R meets at A and S be the focus , prove that SP.SQ.SR=`a(SA)^2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

The normal to the parabola y^(2)=4ax at three points P,Q and R meet at A. If S is the focus, then prove that SP*SQ*SR=aSA^(2) .

If the normals at P, Q, R of the parabola y^2=4ax meet in A and S be its focus, then prove that .SP . SQ . SR = a . (SA)^2 .

If the normals at P, Q, R of the parabola y^2=4ax meet in O and S be its focus, then prove that .SP . SQ . SR = a . (SO)^2 .

If the normals at P, Q, R of the parabola y^2=4ax meet in O and S be its focus, then prove that .SP . SQ . SR = a . (SO)^2 .

If the normals at P, Q, R of the parabola y^2=4ax meet in O and S be its focus, then prove that .SP . SQ . SR = a . (SO)^2 .

The tangents to the parabola y^(2)=4ax at the vertex V and any point P meet at Q. If S is the focus,then prove that SP.SQ, and SV are in G.

If the normals at P,Q,R of the parabola y^(2)=4ax meet in O and S be its focus,then prove that.SP.SQ.SR=a.(SO)^(2)

The tangents to the parabola y^2=4a x at the vertex V and any point P meet at Q . If S is the focus, then prove that S P,S Q , and S V are in GP.

If the tangents at the points P and Q on the parabola y^2 = 4ax meet at R and S is its focus, prove that SR^2 = SP.SQ .

If the tangents at the points P and Q on the parabola y^2 = 4ax meet at R and S is its focus, prove that SR^2 = SP.SQ .