Home
Class 12
MATHS
If p(x)=ax^(2)+bx and q(x)=lx^(2)+mx+n w...

If `p(x)=ax^(2)+bx` and `q(x)=lx^(2)+mx+n` with `p(1)=q(1), p(2)-q(2)=1`, and `p(3)-q(3)=4`, then `p(4)-q(4)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let p(x)=a^(2)+bx,q(x)=lx^(2)+mx+n . If p(1)-q(1)=0,p(2)-q(2)=1andp(3)-q(3)=4 , then p(4)-q(4) equals :

2p+3q=18 and 4p^(2)+4pq-3q^(2)-36=0 then what is (2p+q) equal to?

2p+3q=18 and 4p^2+4pq–3q2−36=0 then what is (2p+q) equal to?

If ((1)/(16)p^(2)-q) =(1/4p-11) (1/4 p+11) then q is

if 2^(p)+3^(q)=17 and 2^(p+2)-3^(q+1)=5 then find the value of p&q

If the lines p_(1)x+q_(1)y=1+q_(2)y=1 and p_(3)x+q_(3)y=1 be concurrent,show that the point (p_(1),q_(1)),(p_(2),q_(2)) and (p_(3),q_(3)) are collinear.

Let P and Q be 3xx3 matrices with P!=Q. If P^(3)=Q^(3) and P^(2)Q=Q^(2)P, then determinant of (P^(2)+Q^(2)) is equal to (1)2(2)1(3)0(4)1

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to

If P=[(lambda,0),(7,1)] and Q=[(4,0),(-7,1)] such that P^(2)=Q , then P^(3) is equal to