Home
Class 11
MATHS
t 1 and  t 2 are two p...

t 1 and  t 2 are two points on the parabola `y^2 =4ax` . If the focal chord joining them coincides with the normal chord, then ` (a) t1(t1+t2)+2=0 (b)` t1+t2=0 ` (c)`` t1*t2=-1` (d) none of these     

Promotional Banner

Similar Questions

Explore conceptually related problems

If the normals at points t_1 and t_2 meet on the parabola, then (a) t_1t_2=1 (b) t_2=-t_1-2/(t_1) (c) t_1t_2=2 (d) none of these

If the chord joining t_(1) and t_(2) on the parabola y^(2) = 4ax is a focal chord then

If the chord joining t_(1) and t_(2) on the parabola y^(2) = 4ax is a focal chord then

If the normals at points t_1a n dt_2 meet on the parabola, then t_1t_2=1 (b) t_2=-t_1-2/(t_1) t_1t_2=2 (d) none of these

If the chord joining the points t_1 and t_2 on the parabola y^2 = 4ax subtends a right angle at its vertex then t_1t_2=

if the normal at the point t_(1) on the parabola y^(2) = 4ax meets the parabola again in the point t_(2) then prove that t_(2) = - ( t_(1) + 2/t_(1))

If the normals at points t_(1) and t_(2) meet on the parabola,then t_(1)t_(2)=1 (b) t_(2)=-t_(1)-(2)/(t_(1))t_(1)t_(2)=2( d) none of these

If the chord joining the points t_(1) and t_(2) on the parabola y^(2)=4ax subtends a right angle at its vertex then t_(2)=