Home
Class 12
MATHS
Let a, b and c are the roots of the equa...

Let a, b and c are the roots of the equation `x^(3)-7x^(2)+9x-13=0` and A and B are two matrices given by `A=[(a,b,c),(b,c,a),(c,a,b)] and B=[(bc-a^(2),ca-b^(2),ab-c^(2)),(ca-b^(2),ab-c^(2),bc-a^(2)),(ab-c^(2),bc-a^(2),ca-b^(2))]`, then the value `|A||B|` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

det[[bc-a^(2),ca-b^(2),ab-c^(2)ca-b^(2),ab-c^(2),bc-a^(2)ab-c^(2),bc-a^(2),ca-b^(2)]]=det[[a,b,cb,c,ac,a,b]]^(2)

|((b+c)^(2),a^(2),bc),((c+a)^(2),b^(2),ca),((a+b)^(2),c^(2),ab)|=

|(a,b,c),(a^(2),b^(2),c^(2)),(bc,ca,ab)|=

|[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]|=|[a,b,c],[b,c,a],[c,a,b]|^2

|[bc,ca,ab],[(b+c)^(2),(c+a)^(2),(a+b)^(2)],[a^(2),b^(2)c^(2)]|

Prove that |(bc-a^2, ca-b^2, ab-c^2),(ca-b^2, ab-c^2, bc-a^2),(ab-c^2, bc-a^2, ca-b^2)| is divisible by a+b+c. Also find the value of the quotient.

Prove that: |[bc-a^2, ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.

Prove that: |[bc-a^2,ca-b^2,ab-c^2],[ca-b^2,ab-c^2,bc-a^2],[ab-c^2,bc-a^2,ca-b^2]| is divisible by a+b+c and find the quotient.