Home
Class 11
MATHS
The Fibonacci sequence is defined by 1=...

The Fibonacci sequence is defined by `1=a_1=a_2` and `a_n=a_(n-1)+a_(n-2),n >2`. Find `(a_(n+1))/(a_n),`for n = 1, 2, 3, 4, 5.

Text Solution

AI Generated Solution

To solve the problem, we need to find the ratio \( \frac{a_{n+1}}{a_n} \) for \( n = 1, 2, 3, 4, 5 \) in the Fibonacci sequence defined by \( a_1 = a_2 = 1 \) and \( a_n = a_{n-1} + a_{n-2} \) for \( n > 2 \). ### Step-by-Step Solution: 1. **Identify the Fibonacci Sequence:** - The first two terms are given: \[ a_1 = 1, \quad a_2 = 1 ...
Promotional Banner

Topper's Solved these Questions

  • SEQUENCES AND SERIES

    NCERT|Exercise EXERCISE 9.5|6 Videos
  • SEQUENCES AND SERIES

    NCERT|Exercise EXERCISE 9.3|32 Videos
  • RELATIONS AND FUNCTIONS

    NCERT|Exercise EXERCISE 2.3|5 Videos
  • SETS

    NCERT|Exercise EXERCISE 1.5|7 Videos

Similar Questions

Explore conceptually related problems

The Fibonacci sequence is defined by 1=a_(1)=a_(2) and a_(n)=a_(n-1)+a_(n-2),n>2 Find (a_(n+1))/(a_(n)),f or n=5

The Fibonacci sequence is defined by 1=a_(1)=a_(2)and a_(n)=a_(n-1)+a_(n-2),ngt2. "Find "(a_(n+1))/(a_(n)),"for n = 1, 2, 3, 4, 5."

The fibonacct sequence is defined by 1=a_(1) = a_(2) and a_(n-1) + a_( n-1) , n gt 1 Find (a_(n+1))/(a_(n)) " for " n =1 ,2,34,5,

The Fibonacci sequence is defined by a_(1)=1=a_(2),a_(n)=a_(n-2)f or n>2. Find (a_(n+1))/(a_(n))f or n=1,2,3,4,5

Let a sequence be defined by a_(1)=1,a_(2)=1 and a_(n)=a_(n-1)+a_(n-2) for all n>2, Find (a_(n+1))/(a_(n)) for n=1,2,3,4

A sequence is defined as follows : a_(a)=4, a_(n)=2a_(n-1)+1, ngt2 , find (a_(n+1))/(a_(n)) for n=1, 2, 3.

Fibonacci sequence is defined as follows : a_(1)=a_(2)=1 and a_(n)=a_(n-2)+a_(n-1) , where n gt 2 . Find third, fourth and fifth terms.

A sequence is defined as follows : a_(1)=3, a_(n)=2a_(n-1)+1 , where n gt 1 . Where n gt 1 . Find (a_(n+1))/(a_(n)) for n = 1, 2, 3.

If quad 1,a_(1)=3 and a_(n)^(2)-a_(n-1)*a_(n+1)=(-1)^(n) Find a_(3).