Home
Class 12
MATHS
If (3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0...

If `(3+i)(z+bar(z))-(2+i)(z-bar(z))+14i=0`, where `i=sqrt(-1)`, then z `bar(z)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If (3+i)(z+bar z)-(2+i) (z- bar z)+14i=0 , then z bar z =

If z=i-1, then bar(z)=

If (7+i)(z + bar(z))-(4+i)(z-bar(z)) + 116i = 0 then z bar(z) is equal to ______________.

If (4+i)(z+bar(z))-(3+i)(z-bar(z))+26i = 0 , then the value of |z|^(2) is

If a complex number z is such that (7 +i)(z + bar(z))-(4+i)(z-bar(z))+116 i =0 , "then " z* bar(z) =

If z=1+i sqrt(3), then |arg(z)|+|arg(bar(z))| equals to

If (z-i)/(z+i) (z ne -i) is a purely imaginary number, then z. bar(z) is equal to

Let |z_(1)|=3, |z_(2)|=2 and z_(1)+z_(2)+z_(3)=3+4i . If the real part of (z_(1)bar(z_(2))+z_(2)bar(z_(3))+z_(3)bar(z_(1))) is equal to 4, then |z_(3)| is equal to (where, i^(2)=-1 )