Home
Class 11
MATHS
If u=tan^(-1)""(sqrt(1+x^(2))-1)/x " and...

If `u=tan^(-1)""(sqrt(1+x^(2))-1)/x " and " v=tan^(-1)x, " find " (du)/(dv)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

tan^(-1)(x+sqrt(1+x^(2)))=

If u=tan^(-1){(sqrt(1+x^2)-1)/x} and v=2tan^(-1)x , then (d u)/(d v) is equal to......

If u = tan^(-1) (( sqrt(1- x^(2) ) - 1)/( x) ) and v = sin^(-1) x , then (du)/(dv) is equal to a) sqrt( 1- x^2) b) - (1)/(2) c)1 d)-x

tan[(sqrt(1+x^(2))-1)/x] =

tan[2Tan^(-1)((sqrt(1+x^(2))-1)/x)]=

If u=sin^(-1)((2x)/(1+x^(2))) and v=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is :

Prove that tan^(-1)((sqrt(1+x^2)-1)/x)=1/2 tan^(-1)x .

If u=sin^(-1)((2x)/(1+x^(2)))andv=tan^(-1)((2x)/(1-x^(2))) , then (du)/(dv) is

Find the derivative of tan^(-1) "" (sqrt(1 + x^(2)) - 1)/( x) with respect to tan^(-1) ( 2 x sqrt( 1 - x^(2)))/(1 - 2 x ^(2)) at x = 0