Home
Class 12
MATHS
18. Prove that |[a,c,b],[b,a,c],[c,b,a]|...

18. Prove that `|[a,c,b],[b,a,c],[c,b,a]| = (a + b + c)(a + bomega + comega^2)(a + bomega^2 + comega)` : where `omega` is a nonreal cube root of unity.

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that a^3 + b^3 + c^3 – 3abc = (a + b + c) (a + bomega + comega^2) (a + bomega^2 + "c"omega) , where omega is an imaginary cube root of unity.

(a+bomega+comega^(2))/(c+aomega+bomega^(2))

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

If x=a+b, y=aomega+bomega^2 and z=aomega^2+bomega where omega is an imaginary cube root of unity, prove that x^2+y^2+z^2=6ab .

If a , b , c are real numbers, prove that |[a,b,c],[b,c,a],[c,a,b]|=-(a+b+c)(c+b w+c w^2)(a+b w^2+c w), where w is a complex cube root of unity.

The value of (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+aomega+bomega^2) (where 'omega' is the imaginary cube root of unity), is (a) -omega (b). omega^2 (c). 1 (d). -1

The value of (a+bomega+comega^2)/(b+comega+aomega^2)+(a+bomega+comega^2)/(c+aomega+bomega^2) (where 'omega' is the imaginary cube root of unity), is a.-omega b. omega^2 c. 1 d. -1

If p=a+b omega+c omega^(2);q=b+c omega+a omega^(2) and r=c+a omega+b omega^(2) where a,b,c!=0 and omega is the complex cube root of unity,then