Home
Class 12
MATHS
If f(x)=sinx, g(x)=cosx and h(x)=cos(cos...

If `f(x)=sinx, g(x)=cosx and h(x)=cos(cosx),` then the integral `I=int f(g(x)).f(x).h(x)dx` simplifies to `-lambda sin^(2)(cosx)+C` (where, C is the constant of integration). The value of `lambda` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

The integral I=int2^((2^(x)+x))dx=lambda. (2^(2^(x)))+C (where, C is the constant of integration). Then the value of sqrtlambda is equal to

The integral I=int2^((2^(x)+x))dx=lambda. (2^(2^(x)))+C (where, C is the constant of integration). Then the value of sqrtlambda is equal to

If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C , (where, C is the constant of integration) then the value of (1)/(lambda)+mu is equal to

If the integral I=int(dx)/(x^(10)+x)=lambda ln ((x^(9))/(1+x^(mu)))+C , (where, C is the constant of integration) then the value of (1)/(lambda)+mu is equal to

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

The integral I=int[xe^(x^(2))(sinx^(2)+cosx^(2))]dx =f(x)+c , (where, c is the constant of integration). Then, f(x) can be

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

If the integral I=inte^(x^(2))x^(3)dx=e^(x^(2))f(x)+c , where c is the constant of integration and f(1)=0 , then the value of f(2) is equal to

The value of the integral I=inte^(x)(sinx+cosx)dx is equal to e^(x).f(x)+C, C being the constant of integration. Then the maximum value of y=f(x^(2)), AA x in R is equal to

The value of the integral I=inte^(x)(sinx+cosx)dx is equal to e^(x).f(x)+C, C being the constant of integration. Then the maximum value of y=f(x^(2)), AA x in R is equal to