Home
Class 12
MATHS
Let f(x) = ax^2 + bx + c where a,b,c are...

Let `f(x) = ax^2 + bx + c` where `a,b,c` are integers. If `sin\ pi/7 * sin\ (3pi)/7 + sin\ (3pi)/7 * sin\ (5pi)/7 + sin\ (5pi)/7 * sin\ (pi)/7=f(cos\ (pi)/7)`. then find the value of `f(2):`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin^4\ pi/8 + sin^4\ (3pi)/8 + sin^4\ (5pi)/8 + sin^4\ (7pi)/8=

The value of sin\ pi/16 sin\ (3pi)/16 sin\ (5pi)/16 sin\ (7pi)/16 is

Prove that: sinpi/7+sin(2pi)/(7) + sin(8pi)/7 + sin(9pi)/7=0

sin "" (2pi)/(7) + sin "" (4pi)/(7) + sin "" (8pi)/(7) =

Show that : sin pi/7 *sin 2pi/7* sin3pi/7 = sqrt7/8

"sin"pi/14" sin"(3pi)/14" sin"(5pi)/14" sin"(7pi)/5=

The value of 2 sin (pi/8) sin((2pi)/8) sin((3pi)/8) sin ((5pi)/8) sin ((6pi)/8) sin((7pi)/8) is :