Home
Class 11
PHYSICS
The linear momentum p of a body moving i...

The linear momentum p of a body moving in one dimension varies with time t according to the equation `p = a + bt^(2)`, where a and p are positive constant. The net force acting on the body is

Promotional Banner

Similar Questions

Explore conceptually related problems

The linear momentum p of a body moving in one dimension varies with time according to the equation p=a+bt^(2) , where a and b are positive constants. The net force acting on the body is

The linear momentum p of a body moving in one dimension varies with time according to the equation p=a+bt^(2) where a and b are positive constants. The net force acting on the body is

The linear momentum p of a body moving in one dimension varies with time according to the equation p=a+bt^(2) where a and b are positive constants. The net force acting on the body is

The linear momentum P of a body moving in one dimension varies with time according to the equation P = at^(3) + "bt" where a and b are positive constants. The net force acting on the body is :

The linear momentum P of a body varies with time is given by a equation P = x + yt^(2) where x and y are constants. The net force acting on the body for one directional motion is proportional to :

The linear momentum P of a body varies with time and is given by the equation P=x+yt2, where x and y are constants. The net force acting on the body for a one dimensional motion is proportional to-

The linear momentum P of a body varies with time and is given by the equation P=x+yt2, where x and y are constants. The net force acting on the body for a one dimensional motion is proportional to-