Home
Class 12
MATHS
The function f(x)=tan^(-1)(sinx+cosx) is...

The function `f(x)=tan^(-1)(sinx+cosx)` is an increasing function in

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = e^(sinx+cosx) is an increasing function in

The function f(x)=(sinx+cosx) is an increasing function in

Show that f(x)=tan^(-1)(sinx+cosx) is an increasing function on the interval (0,\ pi//4) .

Show that f(x)=tan^(-1)(sinx+cosx) is a decreasing function on the interval on (pi//4,\ pi//2) .

The function f(x)=tan^(-1)x-In(1+x^(2)) is increasing for

Show that the function f given by f(x) = tan^-1(sinx+cosx), x>0 is always an increasing function in f, (0,pi/4)

f(x)=tan^(-1)(sinx+cosx), x gt0 is always and increasing function on the interval

f(x)=tan^(-1)(sinx+cosx),"then "f(x) is increasing in

Prove the following f(x)=tan^(-1)(sinx+cosx) is strictly decreasing function on ((pi)/(4),(pi)/(2)) .

Show that f(x)=tan^(-1)(sinx+cosx) is decreasing function on the interval (pi/4,pi/2)dot